SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zand Iman) "

Sökning: WFRF:(Zand Iman)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bogaerts, Wim, et al. (författare)
  • MORPHIC : Programmable Photonic Circuits enabled by Silicon Photonic MEMS
  • 2020
  • Ingår i: Proceedings Volume 11285 SPIE OPTO - 1-6 February 2020 Silicon Photonics XV. - : SPIE-Intl Soc Optical Eng.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • In the European project MORPHIC we develop a platform for programmable silicon photonic circuits enabled by waveguide-integrated micro-electro-mechanical systems (MEMS). MEMS can add compact, and low-power phase shifters and couplers to an established silicon photonics platform with high-speed modulators and detectors. This MEMS technology is used for a new class of programmable photonic circuits, that can be reconfigured using electronics and software, consisting of large interconnected meshes of phase shifters and couplers. MORPHIC is also developing the packaging and driver electronics interfacing schemes for such large circuits, creating a supply chain for rapid prototyping new photonic chip concepts. These will be demonstrated in different applications, such as switching, beamforming and microwave photonics.
  •  
2.
  • Bogaerts, Wim, et al. (författare)
  • Programmable Photonic Circuits powered by Silicon Photonic MEMS Technology
  • 2022
  • Ingår i: Photonic Networks and Devices, Networks 2022. - : Optica Publishing Group (formerly OSA).
  • Konferensbidrag (refereegranskat)abstract
    • Programmable photonic chips allow flexible reconfiguration of on-chip optical connections, controlled through electronics and software. We will present the recent progress of such complex photonic circuits powered by silicon photonic MEMS actuators.
  •  
3.
  • Bogaerts, Wim, et al. (författare)
  • Programmable silicon photonic circuits powered by MEMS
  • 2022
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE-Intl Soc Optical Eng.
  • Konferensbidrag (refereegranskat)abstract
    • We present our work to extend silicon photonics with MEMS actuators to enable low-power, large scale programmable photonic circuits. For this, we start from the existing iSiPP50G silicon photonics platform of IMEC, where we add free-standing movable waveguides using a few post-processing steps. This allows us to implement phase shifters and tunable couplers using electrostatically actuated MEMS, while at the same time maintaining all the original functionality of the silicon photonics platform. The MEMS devices are protected using a wafer-level sealing approach and interfaced with custom multi-channel driver and readout electronics.
  •  
4.
  • Bogaerts, Wim, et al. (författare)
  • Scaling programmable silicon photonics circuits
  • 2023
  • Ingår i: Silicon Photonics XVIII. - : SPIE-Intl Soc Optical Eng.
  • Konferensbidrag (refereegranskat)abstract
    • We give an overview the progress of our work in silicon photonic programmable circuits, covering the techn stack from the photonic chip over the driver electronics, packaging technologies all the way to the sof layers. On the photonic side, we show our recent results in large-scale silicon photonic circuits with diff tuning technologies, including heaters, MEMS and liquid crystals, and their respective electronic driving sch We look into the scaling potential of these different technologies as the number of tunable elements in a ci increases. Finally, we elaborate on the software routines for routing and filter synthesis to enable the pho programmer.
  •  
5.
  • Jo, Gaehun, 1992-, et al. (författare)
  • Wafer-level Hermetic Sealing of Silicon Photonic MEMS by Direct Metal-to-Metal Bonding
  • 2022
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • The field of silicon (Si) photonic micro-electromechanical system (MEMS) for photonic integrated circuits (PICs) has evolved rapidly. Thanks to the ultra-low power consumption of Si photonic MEMS, it enables a wide range of high-performance photonic devices such as integrated optical MEMS phase shifters, tunable couplers and switches. However, photonic MEMS have suspended and movable parts which need to be protected from environmental influences, such as exposure to dust and humidity. Therefore, a packaging solution is needed for reliable operation over long periods. Here, we demonstrate wafer-level vacuum sealing of Si photonic MEMS inside cavities with ultra-thin Si caps.
  •  
6.
  • Jo, Gaehun, 1992-, et al. (författare)
  • Wafer-level hermetically sealed silicon photonic MEMS
  • 2022
  • Ingår i: Photonics Research. - : Optical Society of America. - 2327-9125. ; 10:2, s. A14-A21
  • Tidskriftsartikel (refereegranskat)abstract
    • The emerging fields of silicon (Si) photonic micro–electromechanical systems (MEMS) and optomechanics enable a wide range of novel high-performance photonic devices with ultra-low power consumption, such as integrated optical MEMS phase shifters, tunable couplers, switches, and optomechanical resonators. In contrast to conventional SiO2-clad Si photonics, photonic MEMS and optomechanics have suspended and movable parts that need to be protected from environmental influence and contamination during operation. Wafer-level hermetic sealing can be a cost-efficient solution, but Si photonic MEMS that are hermetically sealed inside cavities with optical and electrical feedthroughs have not been demonstrated to date, to our knowledge. Here, we demonstrate wafer-level vacuum sealing of Si photonic MEMS inside cavities with ultra-thin caps featuring optical and electrical feedthroughs that connect the photonic MEMS on the inside to optical grating couplers and electrical bond pads on the outside. We used Si photonic MEMS devices built on foundry wafers from the iSiPP50G Si photonics platform of IMEC, Belgium. Vacuum confinement inside the sealed cavities was confirmed by an observed increase of the cutoff frequency of the electro-mechanical response of the encapsulated photonic MEMS phase shifters, due to reduction of air damping. The sealing caps are extremely thin, have a small footprint, and are compatible with subsequent flip-chip bonding onto interposers or printed circuit boards. Thus, our approach for sealing of integrated Si photonic MEMS clears a significant hurdle for their application in high-performance Si photonic circuits.
  •  
7.
  • Khan, Umar, et al. (författare)
  • Low power actuators for programmable photonic processors
  • 2023
  • Ingår i: AI and Optical Data Sciences IV. - : SPIE-Intl Soc Optical Eng.
  • Konferensbidrag (refereegranskat)abstract
    • The demand for efficient actuators in photonics has peaked with increasing popularity for large-scale general-purpose programmable photonics circuits. We present our work to enhance an established silicon photonics platform with low-power micro-electromechanical (MEMS) and liquid crystal (LC) actuators to enable large-scale programmable photonic integrated circuits (PICs).
  •  
8.
  • Khan, Umar, et al. (författare)
  • MORPHIC : MEMS enhanced silicon photonics for programmable photonics
  • 2022
  • Ingår i: Integrated Photonics Platforms Ii. - : SPIE-Intl Soc Optical Eng.
  • Konferensbidrag (refereegranskat)abstract
    • We present our work in the European project MORPHIC to extend an established silicon photonics platform with low-power and non-volatile micro-electromechanical (MEMS) actuators to demonstrate large-scale programmable photonic integrated circuits (PICs).
  •  
9.
  • Quack, Niels, et al. (författare)
  • Integrated silicon photonic MEMS
  • 2023
  • Ingår i: MICROSYSTEMS & NANOENGINEERING. - : Springer Nature. - 2055-7434. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Silicon photonics has emerged as a mature technology that is expected to play a key role in critical emerging applications, including very high data rate optical communications, distance sensing for autonomous vehicles, photonic-accelerated computing, and quantum information processing. The success of silicon photonics has been enabled by the unique combination of performance, high yield, and high-volume capacity that can only be achieved by standardizing manufacturing technology. Today, standardized silicon photonics technology platforms implemented by foundries provide access to optimized library components, including low-loss optical routing, fast modulation, continuous tuning, high-speed germanium photodiodes, and high-efficiency optical and electrical interfaces. However, silicon's relatively weak electro-optic effects result in modulators with a significant footprint and thermo-optic tuning devices that require high power consumption, which are substantial impediments for very large-scale integration in silicon photonics. Microelectromechanical systems (MEMS) technology can enhance silicon photonics with building blocks that are compact, low-loss, broadband, fast and require very low power consumption. Here, we introduce a silicon photonic MEMS platform consisting of high-performance nano-opto-electromechanical devices fully integrated alongside standard silicon photonics foundry components, with wafer-level sealing for long-term reliability, flip-chip bonding to redistribution interposers, and fibre-array attachment for high port count optical and electrical interfacing. Our experimental demonstration of fundamental silicon photonic MEMS circuit elements, including power couplers, phase shifters and wavelength-division multiplexing devices using standardized technology lifts previous impediments to enable scaling to very large photonic integrated circuits for applications in telecommunications, neuromorphic computing, sensing, programmable photonics, and quantum computing.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy