SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zaravinos A) "

Sökning: WFRF:(Zaravinos A)

  • Resultat 1-14 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wang, ZC, et al. (författare)
  • Extraction and analysis of signatures from the Gene Expression Omnibus by the crowd
  • 2016
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7, s. 12846-
  • Tidskriftsartikel (refereegranskat)abstract
    • Gene expression data are accumulating exponentially in public repositories. Reanalysis and integration of themed collections from these studies may provide new insights, but requires further human curation. Here we report a crowdsourcing project to annotate and reanalyse a large number of gene expression profiles from Gene Expression Omnibus (GEO). Through a massive open online course on Coursera, over 70 participants from over 25 countries identify and annotate 2,460 single-gene perturbation signatures, 839 disease versus normal signatures, and 906 drug perturbation signatures. All these signatures are unique and are manually validated for quality. Global analysis of these signatures confirms known associations and identifies novel associations between genes, diseases and drugs. The manually curated signatures are used as a training set to develop classifiers for extracting similar signatures from the entire GEO repository. We develop a web portal to serve these signatures for query, download and visualization.
  •  
2.
  • Björkman, Andrea, et al. (författare)
  • Aberrant recombination and repair during immunoglobulin class switching in BRCA1-deficient human B cells.
  • 2015
  • Ingår i: Proceedings of the National Academy of Sciences. - : Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; 112:7, s. 2157-2162
  • Tidskriftsartikel (refereegranskat)abstract
    • Breast cancer type 1 susceptibility protein (BRCA1) has a multitude of functions that contribute to genome integrity and tumor suppression. Its participation in the repair of DNA double-strand breaks (DSBs) during homologous recombination (HR) is well recognized, whereas its involvement in the second major DSB repair pathway, nonhomologous end-joining (NHEJ), remains controversial. Here we have studied the role of BRCA1 in the repair of DSBs in switch (S) regions during immunoglobulin class switch recombination, a physiological, deletion/recombination process that relies on the classical NHEJ machinery. A shift to the use of microhomology-based, alternative end-joining (A-EJ) and increased frequencies of intra-S region deletions as well as insertions of inverted S sequences were observed at the recombination junctions amplified from BRCA1-deficient human B cells. Furthermore, increased use of long microhomologies was found at recombination junctions derived from E3 ubiquitin-protein ligase RNF168-deficient, Fanconi anemia group J protein (FACJ, BRIP1)-deficient, or DNA endonuclease RBBP8 (CtIP)-compromised cells, whereas an increased frequency of S-region inversions was observed in breast cancer type 2 susceptibility protein (BRCA2)-deficient cells. Thus, BRCA1, together with its interaction partners, seems to play an important role in repairing DSBs generated during class switch recombination by promoting the classical NHEJ pathway. This may not only provide a general mechanism underlying BRCA1's function in maintaining genome stability and tumor suppression but may also point to a previously unrecognized role of BRCA1 in B-cell lymphomagenesis.
  •  
3.
  •  
4.
  • Lambrou, GI, et al. (författare)
  • Fractal dimensions of in vitro tumor cell proliferation
  • 2015
  • Ingår i: Journal of oncology. - : Hindawi Limited. - 1687-8450 .- 1687-8469. ; 2015, s. 698760-
  • Tidskriftsartikel (refereegranskat)abstract
    • Biological systems are characterized by their potential for dynamic adaptation. One of the challenges for systems biology approaches is their contribution towards the understanding of the dynamics of a growing cell population. Conceptualizing these dynamics in tumor models could help us understand the steps leading to the initiation of the disease and its progression.In vitromodels are useful in answering this question by providing information over the spatiotemporal nature of such dynamics. In the present work, we used physical quantities such as growth rate, velocity, and acceleration for the cellular proliferation and identified the fractal structures in tumor cell proliferation dynamics. We provide evidence that the rate of cellular proliferation is of nonlinear nature and exhibits oscillatory behavior. We also calculated the fractal dimensions of our cellular system. Our results show that the temporal transitions from one state to the other also follow nonlinear dynamics. Furthermore, we calculated self-similarity in cellular proliferation, providing the basis for further investigation in this topic. Such systems biology approaches are very useful in understanding the nature of cellular proliferation and growth. From a clinical point of view, our results may be applicable not only to primary tumors but also to tumor metastases.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  • Zaravinos, A (författare)
  • The Regulatory Role of MicroRNAs in EMT and Cancer
  • 2015
  • Ingår i: Journal of oncology. - : Hindawi Limited. - 1687-8450 .- 1687-8469. ; 2015, s. 865816-
  • Tidskriftsartikel (refereegranskat)abstract
    • The epithelial to mesenchymal transition (EMT) is a powerful process in tumor invasion, metastasis, and tumorigenesis and describes the molecular reprogramming and phenotypic changes that are characterized by a transition from polarized immotile epithelial cells to motile mesenchymal cells. It is now well known that miRNAs are important regulators of malignant transformation and metastasis. The aberrant expression of the miR-200 family in cancer and its involvement in the initiation and progression of malignant transformation has been well demonstrated. The metastasis suppressive role of the miR-200 members is strongly associated with a pathologic EMT. This review describes the most recent advances regarding the influence of miRNAs in EMT and the control they exert in major signaling pathways in various cancers. The ability of the autocrine TGF-β/ZEB/miR-200 signaling regulatory network to control cell plasticity between the epithelial and mesenchymal state is further discussed. Various miRNAs are reported to directly target EMT transcription factors and components of the cell architecture, as well as miRNAs that are able to reverse the EMT process by targeting the Notch and Wnt signaling pathways. The link between cancer stem cells and EMT is also reported and the most recent developments regarding clinical trials that are currently using anti-miRNA constructs are further discussed.
  •  
14.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-14 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy