SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zastrow K D) "

Sökning: WFRF:(Zastrow K D)

  • Resultat 1-50 av 81
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bombarda, F., et al. (författare)
  • Runaway electron beam control
  • 2019
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 1361-6587 .- 0741-3335. ; 61:1
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  • 2018
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 58:1
  • Forskningsöversikt (refereegranskat)
  •  
3.
  • Joffrin, E., et al. (författare)
  • Overview of the JET preparation for deuterium-tritium operation with the ITER like-wall
  • 2019
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:11
  • Forskningsöversikt (refereegranskat)abstract
    • For the past several years, the JET scientific programme (Pamela et al 2007 Fusion Eng. Des. 82 590) has been engaged in a multi-campaign effort, including experiments in D, H and T, leading up to 2020 and the first experiments with 50%/50% D-T mixtures since 1997 and the first ever D-T plasmas with the ITER mix of plasma-facing component materials. For this purpose, a concerted physics and technology programme was launched with a view to prepare the D-T campaign (DTE2). This paper addresses the key elements developed by the JET programme directly contributing to the D-T preparation. This intense preparation includes the review of the physics basis for the D-T operational scenarios, including the fusion power predictions through first principle and integrated modelling, and the impact of isotopes in the operation and physics of D-T plasmas (thermal and particle transport, high confinement mode (H-mode) access, Be and W erosion, fuel recovery, etc). This effort also requires improving several aspects of plasma operation for DTE2, such as real time control schemes, heat load control, disruption avoidance and a mitigation system (including the installation of a new shattered pellet injector), novel ion cyclotron resonance heating schemes (such as the three-ions scheme), new diagnostics (neutron camera and spectrometer, active Alfven eigenmode antennas, neutral gauges, radiation hard imaging systems...) and the calibration of the JET neutron diagnostics at 14 MeV for accurate fusion power measurement. The active preparation of JET for the 2020 D-T campaign provides an incomparable source of information and a basis for the future D-T operation of ITER, and it is also foreseen that a large number of key physics issues will be addressed in support of burning plasmas.
  •  
4.
  • Krasilnikov, A., et al. (författare)
  • Evidence of 9 Be + p nuclear reactions during 2ω CH and hydrogen minority ICRH in JET-ILW hydrogen and deuterium plasmas
  • 2018
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 58:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The intensity of 9Be + p nuclear fusion reactions was experimentally studied during second harmonic (2ω CH) ion-cyclotron resonance heating (ICRH) and further analyzed during fundamental hydrogen minority ICRH of JET-ILW hydrogen and deuterium plasmas. In relatively low-density plasmas with a high ICRH power, a population of fast H+ ions was created and measured by neutral particle analyzers. Primary and secondary nuclear reaction products, due to 9Be + p interaction, were observed with fast ion loss detectors, γ-ray spectrometers and neutron flux monitors and spectrometers. The possibility of using 9Be(p, d)2α and 9Be(p, α)6Li nuclear reactions to create a population of fast alpha particles and study their behaviour in non-active stage of ITER operation is discussed in the paper.
  •  
5.
  •  
6.
  • Murari, A., et al. (författare)
  • A control oriented strategy of disruption prediction to avoid the configuration collapse of tokamak reactors
  • 2024
  • Ingår i: Nature Communications. - 2041-1723 .- 2041-1723. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The objective of thermonuclear fusion consists of producing electricity from the coalescence of light nuclei in high temperature plasmas. The most promising route to fusion envisages the confinement of such plasmas with magnetic fields, whose most studied configuration is the tokamak. Disruptions are catastrophic collapses affecting all tokamak devices and one of the main potential showstoppers on the route to a commercial reactor. In this work we report how, deploying innovative analysis methods on thousands of JET experiments covering the isotopic compositions from hydrogen to full tritium and including the major D-T campaign, the nature of the various forms of collapse is investigated in all phases of the discharges. An original approach to proximity detection has been developed, which allows determining both the probability of and the time interval remaining before an incoming disruption, with adaptive, from scratch, real time compatible techniques. The results indicate that physics based prediction and control tools can be developed, to deploy realistic strategies of disruption avoidance and prevention, meeting the requirements of the next generation of devices.
  •  
7.
  • Overview of the JET results
  • 2015
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 55:10
  • Tidskriftsartikel (refereegranskat)
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  •  
20.
  •  
21.
  •  
22.
  •  
23.
  •  
24.
  •  
25.
  •  
26.
  •  
27.
  •  
28.
  •  
29.
  •  
30.
  •  
31.
  • Romanelli, F, et al. (författare)
  • Overview of the JET results
  • 2011
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 51:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Since the last IAEA Conference JET has been in operation for one year with a programmatic focus on the qualification of ITER operating scenarios, the consolidation of ITER design choices and preparation for plasma operation with the ITER-like wall presently being installed in JET. Good progress has been achieved, including stationary ELMy H-mode operation at 4.5 MA. The high confinement hybrid scenario has been extended to high triangularity, lower ρ*and to pulse lengths comparable to the resistive time. The steady-state scenario has also been extended to lower ρ*and ν*and optimized to simultaneously achieve, under stationary conditions, ITER-like values of all other relevant normalized parameters. A dedicated helium campaign has allowed key aspects of plasma control and H-mode operation for the ITER non-activated phase to be evaluated. Effective sawtooth control by fast ions has been demonstrated with3He minority ICRH, a scenario with negligible minority current drive. Edge localized mode (ELM) control studies using external n = 1 and n = 2 perturbation fields have found a resonance effect in ELM frequency for specific q95values. Complete ELM suppression has, however, not been observed, even with an edge Chirikov parameter larger than 1. Pellet ELM pacing has been demonstrated and the minimum pellet size needed to trigger an ELM has been estimated. For both natural and mitigated ELMs a broadening of the divertor ELM-wetted area with increasing ELM size has been found. In disruption studies with massive gas injection up to 50% of the thermal energy could be radiated before, and 20% during, the thermal quench. Halo currents could be reduced by 60% and, using argon/deuterium and neon/deuterium gas mixtures, runaway electron generation could be avoided. Most objectives of the ITER-like ICRH antenna have been demonstrated; matching with closely packed straps, ELM resilience, scattering matrix arc detection and operation at high power density (6.2 MW m-2) and antenna strap voltages (42 kV). Coupling measurements are in very good agreement with TOPICA modelling. © 2011 IAEA, Vienna.
  •  
32.
  • Abel, I, et al. (författare)
  • Overview of the JET results with the ITER-like wall
  • 2013
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 53:10, s. 104002-
  • Tidskriftsartikel (refereegranskat)abstract
    • Following the completion in May 2011 of the shutdown for the installation of the beryllium wall and the tungsten divertor, the first set of JET campaigns have addressed the investigation of the retention properties and the development of operational scenarios with the new plasma-facing materials. The large reduction in the carbon content (more than a factor ten) led to a much lower Z(eff) (1.2-1.4) during L- and H-mode plasmas, and radiation during the burn-through phase of the plasma initiation with the consequence that breakdown failures are almost absent. Gas balance experiments have shown that the fuel retention rate with the new wall is substantially reduced with respect to the C wall. The re-establishment of the baseline H-mode and hybrid scenarios compatible with the new wall has required an optimization of the control of metallic impurity sources and heat loads. Stable type-I ELMy H-mode regimes with H-98,H-y2 close to 1 and beta(N) similar to 1.6 have been achieved using gas injection. ELM frequency is a key factor for the control of the metallic impurity accumulation. Pedestal temperatures tend to be lower with the new wall, leading to reduced confinement, but nitrogen seeding restores high pedestal temperatures and confinement. Compared with the carbon wall, major disruptions with the new wall show a lower radiated power and a slower current quench. The higher heat loads on Be wall plasma-facing components due to lower radiation made the routine use of massive gas injection for disruption mitigation essential.
  •  
33.
  • Fresard, Laure, et al. (författare)
  • Identification of rare-disease genes using blood transcriptome sequencing and large control cohorts
  • 2019
  • Ingår i: Nature Medicine. - : NATURE PUBLISHING GROUP. - 1078-8956 .- 1546-170X. ; 25:6, s. 911-919
  • Tidskriftsartikel (refereegranskat)abstract
    • It is estimated that 350 million individuals worldwide suffer from rare diseases, which are predominantly caused by mutation in a single gene(1). The current molecular diagnostic rate is estimated at 50%, with whole-exome sequencing (WES) among the most successful approaches(2-5). For patients in whom WES is uninformative, RNA sequencing (RNA-seq) has shown diagnostic utility in specific tissues and diseases(6-8). This includes muscle biopsies from patients with undiagnosed rare muscle disorders(6,9), and cultured fibroblasts from patients with mitochondrial disorders(7). However, for many individuals, biopsies are not performed for clinical care, and tissues are difficult to access. We sought to assess the utility of RNA-seq from blood as a diagnostic tool for rare diseases of different pathophysiologies. We generated whole-blood RNA-seq from 94 individuals with undiagnosed rare diseases spanning 16 diverse disease categories. We developed a robust approach to compare data from these individuals with large sets of RNA-seq data for controls (n = 1,594 unrelated controls and n = 49 family members) and demonstrated the impacts of expression, splicing, gene and variant filtering strategies on disease gene identification. Across our cohort, we observed that RNA-seq yields a 7.5% diagnostic rate, and an additional 16.7% with improved candidate gene resolution.
  •  
34.
  • De Rosa, G., et al. (författare)
  • Velocity-resolved Reverberation Mapping of Five Bright Seyfert 1 Galaxies
  • 2018
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 866:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first results from a reverberation-mapping campaign undertaken during the first half of 2012, with additional data on one active galactic nucleus (AGN) (NGC 3227) from a 2014 campaign. Our main goals are (1) to determine the black hole masses from continuum-H beta reverberation signatures, and (2) to look for velocity-dependent time delays that might be indicators of the gross kinematics of the broad-line region. We successfully measure H beta time delays and black hole masses for five AGNs, four of which have previous reverberation mass measurements. The values measured here are in agreement with earlier estimates, though there is some intrinsic scatter beyond the formal measurement errors. We observe velocity-dependent H beta lags in each case, and find that the patterns have changed in the intervening five years for three AGNs that were also observed in 2007.
  •  
35.
  • Stork, D., et al. (författare)
  • Overview of transport, fast particle and heating and current drive physics using tritium in JET plasmas
  • 2005
  • Ingår i: Nuclear Fusion. - 0029-5515 .- 1741-4326. ; 45:10, s. S181-S194
  • Tidskriftsartikel (refereegranskat)abstract
    • Results are presented from the JET Trace Tritium Experimental (TTE) campaign using minority tritium (T) plasmas (n(T)/n(D) < 3%). Thermal tritium particle transport coefficients (D-T, nu(T)) are found to exceed neo-classical values in all regimes, except in ELMy H-modes at high densities and in the region of internal transport barriers (ITBs) in reversed shear plasmas. In ELMy H-mode dimensionless parameter scans, at q(95) 2.8 and triangularity delta = 0.2, the T particle transport scales in a gyro-Bohm manner in the inner plasma (r/a < 0.4), whilst the outer plasma particle transport scaling is more Bohm-like. Dimensionless parameter scans show contrasting behaviour for the trace particle confinement (increases with collisionality, nu* and beta) and bulk energy confinement (decreases with nu* and is independent of beta). In an extended ELMy H-mode data set, with rho*, nu*, and q varied but with neo-classical tearing modes (NTMs) either absent or limited to weak, benign core modes (4/3 or above), the multiparameter fit to the normalized diffusion coefficient in the outer plasma (0.65 < r/a < 0.8) gives D-T/B-phi similar to rho*(2.46) nu*(-0.23) beta(-1.01) q(2.03). In hybrid scenarios (q(min) similar to 1, low positive shear, no sawteeth), the T particle confinement is found to scale with increasing triangularity and plasma current. Comparing regimes (ELMy H-mode, ITB plasma and hybrid scenarios) in the outer plasma region, a correlation of high values of D-T with high values Of nu(T) is seen. The normalized diffusion coefficients for the hybrid and ITB scenarios do not fit the scaling derived for ELMy H-modes. The normalized tritium diffusion scales with normalized poloidal Larmor radius (rho(theta)* = q rho*) in a manner close to gyro-Bohm (similar to rho(sigma)*(3)), with an added inverse P dependence. The effects of ELMs, sawteeth and NTMs on the T particle transport are described. Fast-ion confinement in current-hole (CH) plasmas was tested in TTE by tritium neutral beam injection into JET CH plasmas. gamma-rays from the reactions of fusion alpha and beryllium impurities (Be-9(alpha, n gamma)C-12) characterized the fast fusion-alpha population evolution. The gamma-decay times are consistent with classical alpha plus parent fast triton slowing down times (tau(Ts) + tau(alpha s)) for high plasma currents (I-p > 2 MA) and monotonic q-profiles. In CH discharges the gamma-ray emission decay times are much lower than classical (tau(Ts) + tau(alpha s)), indicating alpha confinement degradation, due to the orbit losses and particle orbit drift predicted by a 3-D Fokker-Planck numerical code and modelled using TRANSP.
  •  
36.
  • Litaudon, X., et al. (författare)
  • Development of steady-state scenarios compatible with ITER-like wall conditions
  • 2007
  • Ingår i: Plasma Physics and Controlled Fusion. - 0741-3335 .- 1361-6587. ; 49:12B, s. B529-B550
  • Tidskriftsartikel (refereegranskat)abstract
    • A key issue for steady-state tokamak operation is to determine the edge conditions that are compatible both with good core confinement and with the power handling and plasma exhaust capabilities of the plasma facing components (PFCs) and divertor systems. A quantitative response to this open question will provide a robust scientific basis for reliable extrapolation of present regimes to an ITER compatible steady-state scenario. In this context, the JET programme addressing steady-state operation is focused on the development of non-inductive, high confinement plasmas with the constraints imposed by the PFCs. A new beryllium main chamber wall and tungsten divertor together with an upgrade of the heating/fuelling capability are currently in preparation at JET. Operation at higher power with this ITER-like wall will impose new constraints on non-inductive scenarios. Recent experiments have focused on the preparation for this new phase of JET operation. In this paper, progress in the development of advanced tokamak (AT) scenarios at JET is reviewed keeping this long-term objective in mind. The approach has consisted of addressing various critical issues separately during the 2006-2007 campaigns with a view to full scenario integration when the JET upgrades are complete. Regimes with internal transport barriers (ITBs) have been developed at q(95) similar to 5 and high triangularity, 3 (relevant to the ITER steady-state demonstration) by applying more than 30 MW of additional heating power reaching beta(N) similar to 2 at B(o) similar to 3.1 T. Operating at higher 6 has allowed the edge pedestal and core densities to be increased pushing the ion temperature closer to that of the electrons. Although not yet fully integrated into a performance enhancing ITB scenario, Neon seeding has been successfully explored to increase the radiated power fraction (up to 60%), providing significant reduction of target tile power fluxes (and hence temperatures) and mitigation of edge localized mode (ELM) activity. At reduced toroidal magnetic field strength, high beta(N) regimes have been achieved and q-profile optimization investigated for use in steady-state scenarios. Values of beta(N) above the 'no-wall magnetohydrodynamic limit' (beta(N) similar to 3.0) have been sustained for a resistive current diffusion time in high-delta configurations (at 1.2 MA/1.8 T). In this scenario, ELM activity has been mitigated by applying magnetic perturbations using error field correction coils to provide ergodization of the magnetic field at the plasma edge. In a highly shaped, quasi-double null X-point configuration, ITBs have been generated on the ion heat transport channel and combined with 'grassy' ELMs with similar to 30 MW of applied heating power (at 1.2 MA/2.7 T, q(95) similar to 7). Advanced algorithms and system identification procedures have been developed with a view to developing simultaneously temperature and q-profile control in real-time. These techniques have so far been applied to the control of the q-profile evolution in JET AT scenarios.
  •  
37.
  • Ongena, J., et al. (författare)
  • Recent progress on JET towards the ITER reference mode of operation at high density
  • 2001
  • Ingår i: Plasma Physics and Controlled Fusion. - 0741-3335 .- 1361-6587. ; 43, s. A11-A30
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent progress towards obtaining high density and high confinement in JET as required for the ITER reference scenario at Q = 10 is summarized. Plasmas with simultaneous confinement H-98(y.2) = 1 and densities up to n/n(Gw) similar to 1 are now routinely obtained. This has been possible (i) by using plasmas at high (delta similar to 0.5) and medium (delta similar to 0.3-0.4) triangularity with sufficient heating power to maintain Type I ELMs, (ii) with impurity seeded plasmas at high (delta similar to 0.5) and low (delta less than or equal to 0.2) triangularity, (iii) with an optimized pellet injection sequence, maintaining the energy confinement and raising the density, and (iv) by carefully tuning the gas puff rate leading to plasmas with peaked density profiles and good confinement at long time scales. These high performance discharges exhibit Type I ELMs, with a new and more favourable behaviour observed at high densities, requiring further studies. Techniques for a possible mitigation of these ELMs are discussed, and first promising results are obtained with impurity seeding in discharges at high triangularity. Scaling studies using the new data of this year show a strong dependence of confinement on upper triangularity, density and proximity to the Greenwald limit. Observed MHD instabilities and methods to avoid these in high density and high confinement plasmas are discussed.
  •  
38.
  • Mantsinen, M. J., et al. (författare)
  • Localized bulk electron heating with ICRF mode conversion in the JET tokamak
  • 2004
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 44:1, s. 33-46
  • Tidskriftsartikel (refereegranskat)abstract
    • Ion cyclotron resonance frequencies (ICRF) mode conversion has been developed for localized on-axis and off-axis bulk electron heating on the JET tokamak. The fast magnetosonic waves launched from the low-field side ICRF antennas are mode-converted to short-wavelength waves on the high-field side of the He-3 ion cyclotron resonance layer in D and He-4 plasmas and subsequently damped on the bulk electrons. The resulting electron power deposition, measured using ICRF power modulation, is narrow with a typical full-width at half-maximum of approximate to30 cm (i.e. about 30% of the minor radius) and the total deposited power to electrons comprises at least up to 80% of the applied ICRF power. The ICRF mode conversion power deposition has been kept constant using He-3 bleed throughout the ICRF phase with a typical duration of 4-6 s, i.e. 15-40 energy confinement times. Using waves propagating in the counter-current direction minimizes competing ion damping in the presence of co-injected deuterium beam ions.
  •  
39.
  •  
40.
  • Tala, T., et al. (författare)
  • Toroidal and poloidal momentum transport studies in tokamaks
  • 2007
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 1361-6587 .- 0741-3335. ; 49:12B, s. B291-B302
  • Tidskriftsartikel (refereegranskat)abstract
    • The present status of understanding of toroidal and poloidal momentum transport in tokamaks is presented in this paper. Similar energy confinement and momentum confinement times, i.e. tau(E)/tau(phi)approximate to 1 have been reported on several tokamaks. It is more important though, to study the local transport both in the core and edge plasma separately as, for example, in the core plasma, a large scatter in the ratio of the local effective momentum diffusivity to the ion heat diffusivity chi(phi eff)/chi(i.eff) among different tokamaks can be found. For example, the value of effective Prandtl number is typically around chi(phi eff)/chi(i.eff)approximate to 0.2 on JET while still tau(E)/tau(phi)approximate to 1 holds. Perturbative NBI modulation experiments on JET have shown, however, that a Prandtl number chi(phi)/chi(i) of around 1 is valid if there is an additional, significant inward momentum pinch which is required to explain the amplitude and phase behaviour of the momentum perturbation. The experimental results, i.e. the high Prandtl number and pinch, are in good qualitative and to some extent also in quantitative agreement with linear gyro-kinetic simulations. In contrast to the toroidal momentum transport which is clearly anomalous, the poloidal velocity is usually believed to be neo-classical. However, experimental measurements on JET show that the carbon poloidal velocity can be an order of magnitude above the predicted value by the neo-classical theory within the ITB. These large measured poloidal velocities, employed for example in transport simulations, significantly affect the calculated radial electric field and therefore the E x B flow shear and hence modify and can significantly improve the simulation predictions. Several fluid turbulence codes have been used to identify the mechanism driving the poloidal velocity to such high values. CUTIE and TRB turbulence codes and also the Weiland model predict the existence of an anomalous poloidal velocity, peaking in the vicinity of the ITB and driven dominantly by the flow due to the Reynold's stress. It is worth noting that these codes and models treat the equilibrium in a simplified way and this affects the geodesic curvature effects and geodesic acoustic modes. The neo-classical equilibrium is calculated more accurately in the GEM code and the simulations suggest that the spin-up of poloidal velocity is a consequence of the plasma profiles steepening when the ITB grows, following in particular the growth of the toroidal velocity within the ITB.
  •  
41.
  • Zastrow, K. D., et al. (författare)
  • Tritium transport experiments on the JET tokamak
  • 2004
  • Ingår i: Plasma Physics and Controlled Fusion. - 0741-3335 .- 1361-6587. ; 46, s. B255-B265
  • Tidskriftsartikel (refereegranskat)abstract
    • An overview is given of the experimental method, the analysis technique and the results for trace tritium experiments conducted on the JET tokamak in 2003. Observations associated with events such as sawtooth collapses, neo-classical tearing modes and edge localized modes are described. Tritium transport is seen to approach neo-classical levels in the plasma core at high density and low q(95), and in the transport barrier region of internal transport barrier (ITB) discharges. Tritium transport remains well above neo-classical levels in all other cases. The correlation of the measured tritium diffusion coefficient and convection velocity for normalized minor radii r/a = [0.65, 0.80] with the controllable parameters q95 and plasma density are found to be consistent for all operational regimes (ELMy H-mode discharges with or without ion cyclotron frequency resonance heating, hybrid scenario and ITB discharges). Scaling with local physics parameters is best described by gyro-Bohm scaling with an additional inverse beta dependence.
  •  
42.
  • Giroud, C., et al. (författare)
  • Method for experimental determination of Z dependence of impurity transport on JET
  • 2007
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 47:4, s. 313-330
  • Tidskriftsartikel (refereegranskat)abstract
    • The prediction of impurity peaking in future fusion devices such as ITER necessitates the study of the dependence on Z of the impurity transport in present devices. In this paper we describe a novel technique to determine the transport of impurities with different atomic numbers independently. A technique has been developed that allows simultaneously the measurement of the transport of Ne and Ar in the same discharge while minimizing the systematic errors in the spectroscopic measurements. The reproduction of the charge-exchange measured densities, absolute vaccum ultra-violet line intensities and absolute soft x-ray intensity is achieved in an impurity transport simulation. The method used to estimate the errors on the transport coefficients of neon (Ne) and argon (Ar) is presented. In the plasma region where the diffusion and convection coefficients are determined for hybrid discharges, the transport of Ne and Ar is observed to exceed neoclassical predictions. In the same regions, the diffusion coefficients of both impurities are similar. The convection coefficients are also comparable for Ne and Ar. The peaking of Ne and Ar density profiles are comparable during the period where the intermittent slow reconnecting n = 1 mode is stable in these hybrid discharges.
  •  
43.
  • Noterdaeme, J. M., et al. (författare)
  • Spatially resolved toroidal plasma rotation with ICRF on JET
  • 2003
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 43:4, s. 274-289
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasmas heated by ICRF only in the JET tokamak show distinct structures in the toroidal rotation profile, with regions where domega/dr > 0 when the minority cyclotron resonance layer is far off-axis. The rotation is dominantly co-current with a clear off-axis maximum. There is only a slight difference between a high-field side (HFS) or a low-field side position of this resonance layer: the off-axis maximum in the rotation profile is modestly higher for the HFS position. This is in contrast to the predictions of theories that rely mainly on the effects arising from ICRF-driven fast ions to account for ICRF-induced plasma rotation. The differences due to the direction of the antenna spectrum (co- or counter-) are small. A more central deposition of the ICRF power in L-mode and operation in H-mode both lead to more centrally peaked profiles, both in the co-direction. Strong MHD modes brake the rotation and lead to overall flat rotation profiles.
  •  
44.
  • Rantamäki, K., et al. (författare)
  • LH wave coupling over ITER-like distances at JET
  • 2007
  • Ingår i: Radio Frequency Power in Plasmas. - : American Institute of Physics (AIP). - 0735404445 - 9780735404441 ; , s. 261-264
  • Konferensbidrag (refereegranskat)abstract
    • Good coupling of LH power at plasma-launcher distance of 15 cm has been obtained at JET. Near-gas injection is used to increase the density in front of the grill. The role of LH power in the density increase at constant gas level is demonstrated. For the first time at JET the temperature of the hot spots caused by parasitic absorption of LH power has been measured.
  •  
45.
  • Weisen, H., et al. (författare)
  • The 'neutron deficit' in the JET tokamak
  • 2017
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 57:7
  • Tidskriftsartikel (refereegranskat)abstract
    • The measured D-D neutron rate of neutral beam heated JET baseline and hybrid H-modes in deuterium is found to be between approximately 50% and 100% of the neutron rate expected from the TRANSP code, depending on the plasma parameters. A number of candidate explanations for the shortfall, such as fuel dilution, errors in beam penetration and effectively available beam power have been excluded. As the neutron rate in JET is dominated by beamplasma interactions, the ` neutron deficit' may be caused by a yet unidentified form of fast particle redistribution. Modelling, which assumes fast particle transport to be responsible for the deficit, indicates that such redistribution would have to happen at time scales faster than both the slowing down time and the energy confinement time. Sawteeth and edge localised modes are found to make no significant contribution to the deficit. There is also no obvious correlation with magnetohydrodynamic activity measured using magnetic probes at the tokamak vessel walls. Modelling of fast particle orbits in the 3D fields of neoclassical tearing modes shows that realistically sized islands can only contribute a few percent to the deficit. In view of these results it appears unlikely that the neutron deficit results from a single physical process in the plasma.
  •  
46.
  • de Vries, P. C., et al. (författare)
  • Effect of toroidal field ripple on the formation of internal transport barriers
  • 2008
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 50:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The effect of a toroidal field (TF) ripple on the formation and performance of internal transport barriers (ITBs) has been studied in JET. It was found that the TF ripple had a profound effect on the toroidal plasma rotation. An increased TF ripple up to delta = 1% led to a lower rotation and reduced the rotational shear in the region where the ITBs were formed. ITB triggering events were observed in all cases and it is thought that the rotational shear may be less important for this process than, for example, the q-profile. However, the increase in the pressure gradient following the ITB trigger was reduced in discharges with a larger TF ripple and consequently a lower rotational shear. This suggests that toroidal rotation and its shear play a role in the growth of the ITB once it has been triggered.
  •  
47.
  • Eriksson, L. G., et al. (författare)
  • Toroidal rotation in RF heated JET plasmas
  • 2009
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 51:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Observations of bulk plasma rotation in radio frequency (RF) heated JET discharges are reported. This study is concentrated on RF heated L-mode plasmas. In particular, the toroidal rotation profiles in plasmas heated by ion cyclotron resonance frequency (ICRF) waves and lower hybrid (LH) waves have been analysed. It is the first time that rotation profiles in JET plasmas with LH waves have been measured in dedicated discharges. It is found that the toroidal plasma rotation in the outer region of the plasmas is in the co-current direction irrespective of the heating scenario. An interesting feature is that the toroidal rotation profile appears to be hollow in many discharges at low plasma current, but a low current in itself does not seem to be a sufficient condition for finding such profiles. Fast ion transport and finite orbit width effects are mechanisms that could explain hollow rotation profiles. This possibility has been investigated by numerical simulations of the torque on the bulk plasma due to fast ICRF accelerated ions. The obtained torque is used in a transport equation for the toroidal momentum density to estimate the effect on the thermal bulk plasma rotation profile.
  •  
48.
  • Hawkes, N. C., et al. (författare)
  • Ion transport barrier formation with low injected torque in JET
  • 2007
  • Ingår i: 34th EPS Conference on Plasma Physics 2007, EPS 2007 - Europhysics Conference Abstracts. - 9781622763344 ; , s. 504-507
  • Konferensbidrag (refereegranskat)abstract
    • Ion temperature ITB trigger events have been provoked on JET with very low levels of injected torque using a 3He minority ion heating scheme. The evidence indicates that E x B shear driven by toroidal rotation is not important in these ITB triggers, however the ITBs which form are weak and short lived. Evidence from other experiments [4], suggests that higher torque is necessary to establish and maintain strong ITBs. Future experiments with the increased RF power of the new JET ICRH antenna will be made to explore whether 'strong' ITBs can be created at high power and low applied torque.
  •  
49.
  • Hawkes, N. C., et al. (författare)
  • Observation of zero current density in the core of JET discharges with lower hybrid heating and current drive
  • 2001
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 8711:11, s. art. no.-115001
  • Tidskriftsartikel (refereegranskat)abstract
    • Simultaneous current ramping and application of lower hybrid heating and current drive (LHCD) have produced a region with zero current density within measurement errors in the core (r/a less than or equal to 0.2) of JET tokamak optimized shear discharges. The reduction of core current density is consistent with a simple physical explanation and numerical simulations of radial current diffusion including the effects of LHCD. However, the core current density is clamped at zero, indicating the existence of a physical mechanism which prevents it from becoming negative.
  •  
50.
  • Lawson, K. D., et al. (författare)
  • Enhancements to the JET poloidally scanning vacuum ultravioletvisible spectrometers
  • 2012
  • Ingår i: Review of Scientific Instruments. - : AIP Publishing. - 0034-6748 .- 1089-7623. ; 83:10, s. 10D536-
  • Tidskriftsartikel (refereegranskat)abstract
    • Enhancements to the JET poloidally scanning spectrometers are presented, which will aid the exploitation of the recently installed ITER-like wall in JET. They include the installation of visible filterphotomultiplier tube assemblies and spectrometers and the replacement of large rotating mirrors in the JET vacuum with small oscillating mirrors outside. The upgrade has resulted in a more robust and reliable diagnostic than before, which is described. Drifts in the mirror angle reconstructed from quadrature encoder signals are found, a reference signal being required. The use of the small scanning mirrors necessitated the inclusion of focusing mirrors to maintain throughput into the vacuum ultraviolet spectrometers. The mirror design has taken account of the extreme sensitivity of the focusing to the grazing angle of incidence, an aspect of importance in the design of grazing incidence focusing components on future machines, such as ITER. The visible system has been absolutely calibrated using an in-vessel light source.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 81

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy