SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zeter V.) "

Sökning: WFRF:(Zeter V.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aamodt, K., et al. (författare)
  • The ALICE experiment at the CERN LHC
  • 2008
  • Ingår i: Journal of Instrumentation. - 1748-0221. ; 3:S08002
  • Forskningsöversikt (refereegranskat)abstract
    • ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model. It is designed to address the physics of strongly interacting matter and the quark-gluon plasma at extreme values of energy density and temperature in nucleus-nucleus collisions. Besides running with Pb ions, the physics programme includes collisions with lighter ions, lower energy running and dedicated proton-nucleus runs. ALICE will also take data with proton beams at the top LHC energy to collect reference data for the heavy-ion programme and to address several QCD topics for which ALICE is complementary to the other LHC detectors. The ALICE detector has been built by a collaboration including currently over 1000 physicists and engineers from 105 Institutes in 30 countries, Its overall dimensions are 16 x 16 x 26 m(3) with a total weight of approximately 10 000 t. The experiment consists of 18 different detector systems each with its own specific technology choice and design constraints, driven both by the physics requirements and the experimental conditions expected at LHC. The most stringent design constraint is to cope with the extreme particle multiplicity anticipated in central Pb-Pb collisions. The different subsystems were optimized to provide high-momentum resolution as well as excellent Particle Identification (PID) over a broad range in momentum, up to the highest multiplicities predicted for LHC. This will allow for comprehensive studies of hadrons, electrons, muons, and photons produced in the collision of heavy nuclei. Most detector systems are scheduled to be installed and ready for data taking by mid-2008 when the LHC is scheduled to start operation, with the exception of parts of the Photon Spectrometer (PHOS), Transition Radiation Detector (TRD) and Electro Magnetic Calorimeter (EMCal). These detectors will be completed for the high-luminosity ion run expected in 2010. This paper describes in detail the detector components as installed for the first data taking in the summer of 2008.
  •  
2.
  • Edgecock, T. R., et al. (författare)
  • High intensity neutrino oscillation facilities in Europe
  • 2013
  • Ingår i: Physical Review Special Topics - Accelerators and Beams. - : American Physical Society. - 1098-4402. ; 16:2, s. 021002-
  • Tidskriftsartikel (refereegranskat)abstract
    • The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Frejus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of mu(+) and mu(-) beams in a storage ring. The far detector in this case is a 100 kt magnetized iron neutrino detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neutrinos come from the decay of beta emitting isotopes, in particular He-6 and Ne-18, also stored in a ring. The far detector is also the MEMPHYS detector in the Frejus tunnel. EUROnu has undertaken conceptual designs of these facilities and studied the performance of the detectors. Based on this, it has determined the physics reach of each facility, in particular for the measurement of CP violation in the lepton sector, and estimated the cost of construction. These have demonstrated that the best facility to build is the Neutrino Factory. However, if a powerful proton driver is constructed for another purpose or if the MEMPHYS detector is built for astroparticle physics, the Super Beam also becomes very attractive.
  •  
3.
  • Aguilar, J., et al. (författare)
  • Search for Leptonic CP Violation with the ESSnuSBplus Project
  • 2024
  • Ingår i: Letters in High Energy Physics. - : Andromeda Publishing And Academic Services LTD. - 2632-2714.
  • Tidskriftsartikel (refereegranskat)abstract
    • ESSνSB is a design study for a next-generation long-baseline neutrino experiment that aims at the precise measurement of the CP-violating phase, δCP, in the leptonic sector at the second oscillation maximum. The conceptual design report published from the first phase of the project showed that after 10 years of data taking, more than 70% of the possible δCP range will be covered with 5σ C.L. to reject the no-CP-violation hypothesis. The expected value of δCP precision is smaller than 8◦ for all δCP values. The next phase of the project, the ESSνSB+, aims at using the intense muon flux produced together with neutrinos to measure the neutrino-nucleus cross-section, the dominant term of the systematic uncertainty, in the energy range of 0.2–0.6 GeV, using a Low Energy neutrinos from STORed Muons (LEnuSTORM) and a Low Energy Monitored Neutrino Beam (LEMNB) facilities.
  •  
4.
  • Aguilar, J., et al. (författare)
  • Study of nonstandard interactions mediated by a scalar field at the ESSnuSB experiment
  • 2024
  • Ingår i: Physical Review D. - : American Physical Society. - 2470-0010 .- 2470-0029. ; 109:11
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper, we study scalar mediator induced nonstandard interactions (SNSIs) in the context of the ESSnuSB experiment. In particular, we study the capability of ESSnuSB to put bounds on the SNSI parameters and also study the impact of SNSIs in the measurement of the leptonic CP phase δCP. Existence of SNSIs modifies the neutrino mass matrix and this modification can be expressed in terms of three diagonal real parameters (ηee, ημμ, and ηττ) and three off-diagonal complex parameters (ηeμ, ηeτ, and ημτ). Our study shows that the upper bounds on the parameters ημμ and ηττ depend upon how Δm312 is minimized in the theory. However, this is not the case when one tries to measure the impact of SNSIs on δCP. Further, we show that the CP sensitivity of ESSnuSB can be completely lost for certain values of ηee and ημτ for which the appearance channel probability becomes independent of δCP.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy