SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zgoda Victor) "

Sökning: WFRF:(Zgoda Victor)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Babenko, Vladislav V., et al. (författare)
  • Draft genome sequences of Hirudo medicinalis and salivary transcriptome of three closely related medicinal leeches
  • 2020
  • Ingår i: BMC Genomics. - : Springer Science and Business Media LLC. - 1471-2164. ; 21:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundSalivary cell secretion (SCS) plays a critical role in blood feeding by medicinal leeches, making them of use for certain medical purposes even today.ResultsWe annotated the Hirudo medicinalis genome and performed RNA-seq on salivary cells isolated from three closely related leech species, H. medicinalis, Hirudo orientalis, and Hirudo verbana. Differential expression analysis verified by proteomics identified salivary cell-specific gene expression, many of which encode previously unknown salivary components. However, the genes encoding known anticoagulants have been found to be expressed not only in salivary cells. The function-related analysis of the unique salivary cell genes enabled an update of the concept of interactions between salivary proteins and components of haemostasis.ConclusionsHere we report a genome draft of Hirudo medicinalis and describe identification of novel salivary proteins and new homologs of genes encoding known anticoagulants in transcriptomes of three medicinal leech species. Our data provide new insights in genetics of blood-feeding lifestyle in leeches.
  •  
2.
  • Bespyatykh, Julia, et al. (författare)
  • Proteogenomic analysis of Mycobacterium tuberculosis Beijing B0/W148 cluster strains
  • 2019
  • Ingår i: Journal of Proteomics. - : Elsevier BV. - 1874-3919 .- 1876-7737. ; 192, s. 18-26
  • Tidskriftsartikel (refereegranskat)abstract
    • Nowadays proteomics is one of the major instruments for editing and correcting annotation of genomic information. The correct genome annotation is necessary for omics studies of clinically relevant pathogens like Mycobacterium tuberculosis as well as for the progress in drug design and in silico biology. Here, we focused on the proteogenomic analysis of W-148 strain belonging to the Beijing B0/W148 cluster. This cluster, also known as a "successful" clone possesses unique pathogenic properties and has a unique genome organization. Taking into account high similarity of cluster strains at the genomic level we analyzed MS/MS dataset obtained for 63 clinical isolates of Beijing B0/W148. Based on H37Rv and W-148 annotations we identified 2546 proteins representing more than 60% of total proteome. A set of peptides (n = 404) specific for W-148 was found when compared with H37Rv. Start sites for 32 genes were corrected based on the combination of LC-MS/MS proteomic data with genomic six-frame translation. Additionally, we have shown the presence of peptides related to 10 genes earlier known as "pseudogenes". SIGNIFICANCE: Mycobacterium tuberculosis is one of the most dangerous pathogens. Phylogenetically, it may be divided into major lineages and among them, lineage 2 (predominantly Beijing genotype) one of the most successful lineages with an increasing prevalence in the global population. At the same time, strains of the Beijing B0/W148 cluster, a "successful" clone of Mycobacterium tuberculosis possess even more interesting features. Only one complete genome of this cluster, W-148, present in the NCBI database (CP012090.1) and it demonstrates a number of significant differences from the well-known reference genome H37Rv. For the W-148 strain many genes are annotated as "pseudo" and no attempts were made to correct this. Thereby, in this study, we have conducted a proteomic analysis of the cluster strains and corrected current genome annotation. We hope that the data obtained will help to increase the quality of identifications in proteomic and transcriptomic analysis of M. tuberculosis Beijing B0/W148 cluster strain in subsequent studies.
  •  
3.
  • Bryukhovetskiy, Igor, et al. (författare)
  • Transforming growth factor-beta mimics the key proteome properties of CD133- differentiated and CD133+ cancer stem cells in glioblastoma
  • 2020
  • Ingår i: Novel therapeutic advances in glioblastoma. - : Elsevier BV. - 9780128211144 ; , s. 219-242
  • Bokkapitel (refereegranskat)abstract
    • Glioblastoma multiforme is the most aggressive type of primary brain tumor in humans. Its invasive growth is associated with cluster of differentiation (CD)133 cancer stem cells (CSCs) and CD133(-) differentiated glioblastoma cells (DGCs) with aggressive phenotype, which are developed under the influence of transforming growth factor (TGF)-beta. The present study aimed to compare the proteomes of CD133 CSCs and CD133(-) DGCs stimulated by TGF-beta, as well as the expression levels of the main proteins responsible for activating the signaling pathway of receptor interactions with the extracellular matrix (ECM). The U87MG GBM cell line was used in this study. CSCs were extracted from gliomaspheres through magnetic-activated cell sorting based on the expression of CD133 (CD133); CD133(-) DCGs served as a control. CD133(-) DGCs of the U87-MG cell line were treated with 10ng/mL TGF-beta 1, and cell proliferation and migration were analyzed via real-time quantitative microscopy. High-performance liquid chromatography mass spectrometry was used for proteome analysis. The results revealed 589 proteins with significantly changes in expression among CD133 CSCs compared with those in CD133(-) DGCs (P < 0.05). Bioinformatics analysis allowed to attribute 134 differentially expressed proteins to 15 signaling pathways; among these proteins, 14 were involved in signaling cascades associated with the interaction between CSCs and the ECM, and were upregulated > twofold, while four proteins activated this signaling cascade. TGF-beta-stimulation increased the mobility, suppressed the proliferation and transformed the proteome profile of CD133(-) DGCs. Were identified 13 key proteins that activate the signaling pathway of receptor interaction with the ECM and three proteins activating this signaling pathway in CD133(-) DGCs which had the same values as those of CD133 CSCs. In conclusion, TGF-beta increased the expression of proteins that activate the signaling pathway of receptor interaction with the ECM in CD133(-) DGCs to the level of those in CD133 CSCs.
  •  
4.
  • Maltseva, Diana, et al. (författare)
  • Knockdown of the α5 laminin chain affects differentiation of colorectal cancer cells and their sensitivity to chemotherapy
  • 2020
  • Ingår i: Biochimie. - : Elsevier BV. - 0300-9084 .- 1638-6183. ; 174, s. 107-116
  • Tidskriftsartikel (refereegranskat)abstract
    • The interaction of tumor cells with the extracellular matrix (ECM) may affect the rate of cancer progression and metastasis. One of the major components of ECM are laminins, the heterotrimeric glycoproteins consisting of α-, β-, and γ-chains (αβγ). Laminins interact with their cell surface receptors and, thus, regulate multiple cellular processes. In this work, we demonstrate that shRNA-mediated knockdown of the α5 laminin chain results in Wnt- and mTORC1-dependent partial dedifferentiation of colorectal cancer cells. Furthermore, we showed that this dedifferentiation involved activation of ER-stress signaling, pathway promoting the sensitivity of cells to 5-fluorouracil.
  •  
5.
  • Vialas, Vital, et al. (författare)
  • A multicentric study to evaluate the use of relative retention times in targeted proteomics
  • 2017
  • Ingår i: Journal of Proteomics. - : Elsevier BV. - 1874-3919. ; 152, s. 138-149
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite the maturity reached by targeted proteomic strategies, reliable and standardized protocols are urgently needed to enhance reproducibility among different laboratories and analytical platforms, facilitating a more widespread use in biomedical research. To achieve this goal, the use of dimensionless relative retention times (iRT), defined on the basis of peptide standard retention times (RT), has lately emerged as a powerful tool. The robustness, reproducibility and utility of this strategy were examined for the first time in a multicentric setting, involving 28 laboratories that included 24 of the Spanish network of proteomics laboratories (ProteoRed-ISCIII). According to the results obtained in this study, dimensionless retention time values (iRTs) demonstrated to be a useful tool for transferring and sharing peptide retention times across different chromatographic set-ups both intra- and inter-laboratories. iRT values also showed very low variability over long time periods. Furthermore, parallel quantitative analyses showed a high reproducibility despite the variety of experimental strategies used, either MRM (multiple reaction monitoring) or pseudoMRM, and the diversity of analytical platforms employed. Biological significance From the very beginning of proteomics as an analytical science there has been a growing interest in developing standardized methods and experimental procedures in order to ensure the highest quality and reproducibility of the results. In this regard, the recent (2012) introduction of the dimensionless retention time concept has been a significant advance. In our multicentric (28 laboratories) study we explore the usefulness of this concept in the context of a targeted proteomics experiment, demonstrating that dimensionless retention time values is a useful tool for transferring and sharing peptide retention times across different chromatographic set-ups.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy