SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhai Jiwei) "

Sökning: WFRF:(Zhai Jiwei)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Wang, Yaqiong, et al. (författare)
  • Domain Wall Free Polar Structure Enhanced Photodegradation Activity in Nanoscale Ferroelectric BaxSr1-xTiO3
  • 2020
  • Ingår i: Advanced Energy Materials. - : WILEY-V C H VERLAG GMBH. - 1614-6832 .- 1614-6840. ; 10:38
  • Tidskriftsartikel (refereegranskat)abstract
    • Ferroelectric materials exhibit anomalous behavior due to the presence of domains and domain walls which are related to the spontaneous polarization inherent in the crystal structure. Control of ferroelectric domains and domain walls has been used to enhance device performances in ultrasound, pyroelectric detectors, and photovoltaic systems with renewed interest in nanostructuring for energy applications. It is also known that ferroelectrics including domain walls can double photocatalytic rate and increase carrier lifetime from microsecond to millisecond. However, there remains a lack of understanding on the different contributions of the domain and domain walls to photocatalytic activities. Herein it is found, by comparing samples of nanostructured Ba(x)Sr(1-)(x)TiO(3)with and without a polar domain, that the material with polar domains has a faster reaction rate (k= 0.18 min(-1)) than the nonpolar one (k= 0.11 min(-1)). It is further revealed that the observed enhanced photoactivity of perovskite ferroelectric materials stems from the inherent polarization of the domain instead of domain walls. Here, the new understanding of the underlying physics of materials with a spontaneous dipole opens a door to enhance the performance of light induced energy harvesting systems.
  •  
3.
  • Zhou, Xiaofeng, et al. (författare)
  • Efficient Production of Solar Hydrogen Peroxide Using Piezoelectric Polarization and Photoinduced Charge Transfer of Nanopiezoelectrics Sensitized by Carbon Quantum Dots
  • 2022
  • Ingår i: Advanced Science. - : Wiley. - 2198-3844. ; 9:18
  • Tidskriftsartikel (refereegranskat)abstract
    • Piezoelectric semiconductors have emerged as redox catalysts, and challenges include effective conversion of mechanical energy to piezoelectric polarization and achieving high catalytic activity. The catalytic activity can be enhanced by simultaneous irradiation of ultrasound and light, but the existing piezoelectric semiconductors have trouble absorbing visible light. A piezoelectric catalyst is designed and tested for the generation of hydrogen peroxide (H2O2). It is based on Nb-doped tetragonal BaTiO3 (BaTiO3:Nb) and is sensitized by carbon quantum dots (CDs). The photosensitizer injects electrons into the conduction band of the semiconductor, while the piezoelectric polarization directed electrons to the semiconductor surface, allowing for a high-rate generation of H2O2. The piezoelectric polarization field restricts the recombination of photoinduced electron–hole pairs. A production rate of 1360 µmol gcatalyst−1 h−1 of H2O2 is achieved under visible light and ultrasound co-irradiation. Individual piezo- and photocatalysis yielded lower production rates. Furthermore, the CDs enhance the piezocatalytic activity of the BaTiO3:Nb. It is noted that moderating the piezoelectricity of BaTiO3:Nb via microstructure modulation influences the piezophotocatalytic activity. This work shows a new methodology for synthesizing H2O2 by using visible light and mechanical energy.
  •  
4.
  • Zhou, Xiaofeng, 1989-, et al. (författare)
  • Enhanced Generation of Reactive Oxygen Species via Piezoelectrics based on p–n Heterojunctions with Built-In Electric Field
  • 2024
  • Ingår i: ACS Applied Materials and Interfaces. - 1944-8244 .- 1944-8252. ; 16:16, s. 20472-20484
  • Tidskriftsartikel (refereegranskat)abstract
    • Tuning the charge transfer processes through a built-in electric field is an effective way to accelerate the dynamics of electro- and photocatalytic reactions. However, the coupling of the built-in electric field of p–n heterojunctions and the microstrain-induced polarization on the impact of piezocatalysis has not been fully explored. Herein, we demonstrate the role of the built-in electric field of p-type BiOI/n-type BiVO4 heterojunctions in enhancing their piezocatalytic behaviors. The highly crystalline p–n heterojunction is synthesized by using a coprecipitation method under ambient aqueous conditions. Under ultrasonic irradiation in water exposed to air, the p–n heterojunctions exhibit significantly higher production rates of reactive species (·OH, ·O2–, and 1O2) as compared to isolated BiVO4 and BiOI. Also, the piezocatalytic rate of H2O2 production with the BiOI/BiVO4 heterojunction reaches 480 μmol g–1 h–1, which is 1.6- and 12-fold higher than those of BiVO4 and BiOI, respectively. Furthermore, the p–n heterojunction maintains a highly stable H2O2 production rate under ultrasonic irradiation for up to 5 h. The results from the experiments and equation-driven simulations of the strain and piezoelectric potential distributions indicate that the piezocatalytic reactivity of the p–n heterojunction resulted from the polarization intensity induced by periodic ultrasound, which is enhanced by the built-in electric field of the p–n heterojunctions. This study provides new insights into the design of piezocatalysts and opens up new prospects for applications in medicine, environmental remediation, and sonochemical sensors. 
  •  
5.
  • Zhou, Xiaofeng, et al. (författare)
  • Enhanced Sunlight-Driven Reactive Species Generation via Polarization Field in Nanopiezoelectric Heterostructures
  • 2021
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 13:25, s. 29691-29707
  • Tidskriftsartikel (refereegranskat)abstract
    • Although it is established that the force-induced electric polarization field of piezoelectric semiconductors can be used to tune the transfer rate of photoexcited charge carriers, there is still a lack of successful strategies to effectively improve the photocatalytic reactivity and solar-to-chemical conversion efficiency (SCC) of piezoelectric materials. Here, we are the first to prepare and study a kind of catalyst based on nanopiezoelectric heterostructures of LiNbO3-type ZnTiO3·TiO2 and tetragonal BaTiO3 with Pt or FeOx nanoparticle modification (i.e., ZBTO–Pt or ZBTO–FeOx) for reactive species generation. With respect to the production of •OH and •O2– radicals, higher amounts were observed in piezophotocatalysis relative to those for individual piezo- and photocatalysis. Benefiting from the charge transfer resistance decreases by the deposition of Pt and FeOx, the amounts of •OH radicals formed on ZBTO–Pt and ZBTO–FeOx were approximately 48 and 21% higher than that on isolated ZBTO during piezophotocatalysis, and for the amounts of •O2– radicals the enhancements were approximately 11 and 6%, respectively. Furthermore, the concentrations of H2O2 formed on ZBTO–Pt and ZBTO–FeOx under piezophotocatalysis reached approximately 315 and 206 μM after 100 min of reaction (and was still increasing) corresponding to 0.10 and 0.06% SCCs, respectively, which were also much higher than the concentrations and SCCs observed for piezo- and photocatalysis. The enhancements of piezophotocatalytic activities with these piezoelectric materials were related to the mechanical strain exerted on ZBTO, which generated a larger electric polarization field than those on ZnTiO3·TiO2 and BaTiO3 as analyzed by a finite element method. This high-intensity electric polarization field accelerated the separation and transportation of photoexcited charge carriers in the highly sunlight responsive nanopiezoelectric heterostructures based on ZBTO–Pt and ZBTO–FeOx.
  •  
6.
  • Zhou, Xiaofeng, et al. (författare)
  • Semiconducting piezoelectric heterostructures for piezo- and piezophotocatalysis
  • 2022
  • Ingår i: Nano Energy. - : Elsevier BV. - 2211-2855 .- 2211-3282. ; 96
  • Tidskriftsartikel (refereegranskat)abstract
    • Piezoelectric semiconductors can be polarized and used in mechanoredox systems and photoredox catalysis. Conventional non-piezoelectric semiconductors have limitations when it comes to charge carrier recombination and slow transport rates in catalytic reactions, which can be overcome by piezoelectric polarization processes in piezoelectric semiconductors. Heterostructures based on semiconducting piezoelectrics often offer enhanced catalytic reactivities that are related to their mechanical, piezoelectric, optical, and electronic characteristics. We review how to use such heterostructures to convert mechanical energy into chemical energy, and how the related piezoelectric polarization tunes the band structures and provides advantages in piezophotocatalysis over regular photocatalysis. We discuss fundamental concepts of piezoelectricity, piezoelectric potential, and examine different piezoelectric heterostructures for piezo- and piezophotocatalysis. A review of dynamic investigations of piezo- and piezophotocatalytic processes is presented. The complementary developments in the understanding of the piezotronic and piezophototronic effects are described, which include the induced charge-transfer mechanisms for piezo- and piezophotocatalytic reactions that can occur with piezoelectric heterostructures. Finally, we derive design principles and suggest future research directions in the emerging field of piezo- and piezophotocatalysis employing semiconductive heterostructures.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy