SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhang Fengling) "

Sökning: WFRF:(Zhang Fengling)

  • Resultat 1-50 av 212
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Zhang, Xuning, et al. (författare)
  • On the understanding of energy loss and device fill factor trade-offs in non-fullerene organic solar cells with varied energy levels
  • 2020
  • Ingår i: Nano Energy. - : ELSEVIER. - 2211-2855 .- 2211-3282. ; 75
  • Tidskriftsartikel (refereegranskat)abstract
    • Fill factor (FF) is an important parameter governing the power conversion efficiency (PCE) in non-fullerene organic solar cells (NF-OSCs), which however is less studied than the other two parameters (short-circuit current J(sc) and open-circuit voltage V-oc). To understand how energy offsets, exciton and charge carrier dynamics impact the FF, four groups of bulk heterojunctions (BHJs) NF-OSCs are investigated with FFs varying from 0.61 to 0.78 under progressive changes of HOMO-HOMO offsets (Delta(HOMOs), from 0.09 to 0.24 eV). By pump-probe optical spectroscopy, we find that the FF exhibits a positive dependence on Delta(HOMO) and charge-separated state lifetime (tau(CS)) in the blends, a result of inhibited back charge transfers and recombination at the donor-acceptor interface under higher Delta(HOMO)s. Moreover, we observe a fast charge extraction with decreased sensitivity to internal electric-fields in high-FF devices. Despite these merits, the gains of FF are at the expense of increasing the voltage loss to non-radiative recombination in our studied systems. The combined results suggest that remaining appropriate energetic offsets is essential for controlling the carrier dynamics with longer-lived CS-states, restraining charge back transfer and reducing charge recombination toward high FFs and photovoltaic efficiencies.
  •  
2.
  • Wang, Jianqiu, et al. (författare)
  • A Comparative Study on Hole Transfer Inversely Correlated with Driving Force in Two Non-Fullerene Organic Solar Cells
  • 2019
  • Ingår i: The Journal of Physical Chemistry Letters. - : AMER CHEMICAL SOC. - 1948-7185. ; 10:14, s. 4110-4116
  • Tidskriftsartikel (refereegranskat)abstract
    • We report a faster rate of hole transfer under a smaller AHomo in a comparative study of two group organic solar cells (OSCs) consisting of IT-4F as an acceptor and PBDBT and PBDBT-SF as donors. In the OSCs based on PBDBT. SF:IT-4F, a higher short-circuit current (J(SC)) was observed with a Delta(Homo) of 0.31 eV compared to a lower Jsc in PBDBT:IT-4F OSCs with a larger Delta(Homo) (0.45 eV). Intensive investigation indicates that the rate of transfer of a hole from IT-4F to PBDBT-SF or PBDBT is inversely proportional to the Delta(Homo) between IT-4F and donors. The larger Jsc in the PBDBT-SF:IT-4F device is attributed to a synergy of faster hole transfer, slower recombination, and rapid charge extraction enabled by desired morphology and balanced charge carrier mobilities with PBDBT-SF, suggesting that under a sufficiently high Delta(Homo), comprehensive considerations of the transport, film morphology, and energy levels are needed when designing new materials for high-performance OSCs.
  •  
3.
  • Zhang, Xin, et al. (författare)
  • Light-Up Lipid Droplets Dynamic Behaviors Using a Red-Emitting Fluorogenic Probe
  • 2020
  • Ingår i: Analytical Chemistry. - : AMER CHEMICAL SOC. - 0003-2700 .- 1520-6882. ; 92:5, s. 3613-3619
  • Tidskriftsartikel (refereegranskat)abstract
    • Intracellular lipid metabolism occurs in lipid droplets (LDs), which is critical to the survival of cells. Imaging LDs is an intuitive way to understand their physiology in live cells. However, this is limited by the availability of specific probes that can properly visualize LDs in vivo. Here, an LDs-specific red-emitting probe is proposed to address this need, which is not merely with an ultrahigh signal-to-noise (S/N) ratio and a large Stokes shift (up to 214 nm) but also with superior resistance to photobleaching. The probe has been successfully applied to real-time tracking of intracellular LDs behaviors, including fusion, migration, and lipophagy processes. We deem that the proposed probe here offers a new possibility for deeper understanding of LDs-associated behaviors, elucidation of their roles and mechanisms in cellular metabolism, and determination of the transition between adaptive lipid storage and lipotoxicity as well.
  •  
4.
  • He, Youjun, et al. (författare)
  • Poly(4,8-bis(2-ethylhexyloxy)benzo[1,2-b:4,5-b ]dithiophene vinylene): Synthesis, Optical and Photovoltaic Properties
  • 2010
  • Ingår i: JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY. - : John Wiley and Sons, Ltd. - 0887-624X .- 1099-0518. ; 48:8, s. 1822-1829
  • Tidskriftsartikel (refereegranskat)abstract
    • A new benzodithiophene (BDT)-based polymer, poly(4,8-bis(2-ethylhexyloxy)benzo[1,2-b:4,5-b]dithiophene vinylene) (PBDTV), was synthesized by Pd-catalyzed Stille-coupling method. The polymer is soluble in common organic solvents and possesses high thermal stability. PBDTV film shows a broad absorption band covering from 350 nm to 618 nm, strong photoluminescence peaked at 545 nm and high hole mobility of 4.84 x 10(-3) cm(2)/Vs. Photovoltaic properties of PBDTV were studied by fabricating the polymer solar cells based on PBDTV as donor and PC70BM as acceptor. With the weight ratio of PBDTV: PC70BM of 1:4 and the active layer thickness of 65 nm, the power conversion efficiency of the device reached 2.63% with V-oc = 0.71 V, I-sc = 6.46 mA/cm(2), and FF = 0.57 under the illumination of AM1.5, 100 mW/cm(2).
  •  
5.
  • Yao, Nannan, et al. (författare)
  • Efficient Charge Transport Enables High Efficiency in Dilute Donor Organic Solar Cells
  • 2021
  • Ingår i: The Journal of Physical Chemistry Letters. - : American Chemical Society. - 1948-7185. ; 12:20, s. 5039-5044
  • Tidskriftsartikel (refereegranskat)abstract
    • The donor/acceptor weight ratio is crucial for photovoltaic performance of organic solar cells (OSCs). Here, we systematically investigate the photovoltaic behaviors of PM6:Y6 solar cells with different stoichiometries. It is found that the photovoltaic performance is tolerant to PM6 contents ranging from 10 to 60 wt %. Especially an impressive efficiency over 10% has been achieved in dilute donor solar cells with 10 wt % PM6 enabled by efficient charge generation, electron/ hole transport, slow charge recombination, and field-insensitive extraction. This raises the question about the origin of efficient hole transport in such dilute donor structure. By investigating hole mobilities of PM6 diluted in Y6 and insulators, we find that effective hole transport pathway is mainly through PM6 phase in PM6:Y6 blends despite with low PM6 content. The results indicate that a low fraction of polymer donors combines with near-infrared nonfullerene acceptors could achieve high photovoltaic performance, which might be a candidate for semitransparent windows.
  •  
6.
  • Zhang, Xin, et al. (författare)
  • Tailorable Membrane-Penetrating Nanoplatform for Highly Efficient Organelle-Specific Localization
  • 2021
  • Ingår i: Small. - : Wiley-V C H Verlag GMBH. - 1613-6810 .- 1613-6829. ; 17:31
  • Tidskriftsartikel (refereegranskat)abstract
    • Given the breadth of currently arising opportunities and concerns associated with nanoparticles for biomedical imaging, various types of nanoparticles have been widely exploited, especially for cellular/subcellular level probing. However, most currently reported nanoparticles either have inefficient delivery into cells or lack specificity for intracellular destinations. The absence of well-defined nanoplatforms remains a critical challenge hindering practical nano-based bio-imaging. Herein, the authors elaborate on a tailorable membrane-penetrating nanoplatform as a carrier with encapsulated actives and decorated surfaces to tackle the above-mentioned issues. The tunable contents in such a versatile nanoplatform offer huge flexibility to reach the expected properties and functions. Aggregation-induced emission luminogen (AIEgen) is applied to achieve sought-after photophysical properties, specific targeting moieties are installed to give high affinity towards different desired organelles, and critical grafting of cell-penetrating cyclic disulfides (CPCDs) to promote cellular uptake efficiency without sacrificing the specificity. Hereafter, to validate its practicability, the tailored nano products are successfully applied to track the dynamic correlation between mitochondria and lysosomes during autophagy. The authors believe that the strategy and described materials can facilitate the development of functional nanomaterials for various life science applications.
  •  
7.
  • Li, Yongxi, et al. (författare)
  • A fused-ring based electron acceptor for efficient non-fullerene polymer solar cells with small HOMO offset
  • 2016
  • Ingår i: NANO ENERGY. - : ELSEVIER SCIENCE BV. - 2211-2855. ; 27, s. 430-438
  • Tidskriftsartikel (refereegranskat)abstract
    • A non-fullerene electron acceptor bearing a novel backbone with fused 10-heterocyclic ring (in-dacenodithiopheno-indacenodiselenophene), denoted by IDTIDSe-IC is developed for fullerene free polymer solar cells. IDTIDSe-IC exhibits a low band gap (E-g=1.52 eV) and strong absorption in the 600850 nm region. Combining with a large band gap polymer J51 (E-g=1.91 eV) as donor, broad absorption coverage from 300 nm to 800 nm is obtained due to complementary absorption of J51 and IDTIDSe-IC, which enables a high PCE of 8.02% with a V-oc of 0.91 V, a J(SC) of 15.16 mA/cm(2) and a FF of 58.0% in the corresponding PSCs. Moreover, the EQE of 50-65% is achieved in the absorption range of IDTIDSe-IC with only about 0.1 eV HOMO difference between J51 and IDTIDSe-IC. (C) 2016 Elsevier Ltd. All rights reserved.
  •  
8.
  • Wang, Jianqiu, et al. (författare)
  • Fast Field-Insensitive Charge Extraction Enables High Fill Factors in Polymer Solar Cells
  • 2020
  • Ingår i: ACS Applied Materials and Interfaces. - : AMER CHEMICAL SOC. - 1944-8244 .- 1944-8252. ; 12:34, s. 38460-38469
  • Tidskriftsartikel (refereegranskat)abstract
    • Fill factor (FF) is a determining parameter for the power conversion efficiency (PCE) of organic solar cells (OSC). So far, nonfullerene (NF) OSCs with state-of-the-art PCEs exhibit FFs <0.8, lower than the values of Si or perovskite solar cells. The FFs directly display the dependence of photocurrent on bias, meaning that the competition between charge extraction and recombination is modulated by internal electric potential (V-in). Here, we report a study to understand key parameters/properties affecting the device FF based on seven groups of NF-OSCs consisting of widely used PBDBT-2F or PTB7-Th donors and representative NF-acceptors with FFs ranging from 0.60 to 0.78 and PCEs from 10.27 to 16.09%. We used field-dependent transient photocurrent measurements to reveal that fast and field-insensitive charge extraction at low V-in is an essential prerequisite for obtaining high FFs (0.75-0.8), which is enabled by balanced charge transport in steady and reduced bimolecular charge recombination in high purity phases. With bias-dependent quantum efficiency analysis, we further show that the recombination loss at low V-in in the devices with low FFs tends to be more significant involving excitons generated in the donor phase of blends. Our results provide relevance for how to improve the FF toward the boost of photovoltaic performance in NF-OSCs.
  •  
9.
  • Xiang, Jiale, et al. (författare)
  • In situ monitoring drying process to disclose the correlation between the molecular weights of a polymer acceptor with a flexible spacer and the performance of all-polymer solar cells
  • 2024
  • Ingår i: Journal of Materials Chemistry C. - 2050-7526 .- 2050-7534. ; In Press
  • Tidskriftsartikel (refereegranskat)abstract
    • Molecular weight (Mn) and conjugation of polymers can profoundly influence the performance of all-polymer solar cells (all-PSCs) via nanostructures of bulk heterojunctions (BHJs). To study the correlation between Mn and the performance of all-PSCs based on an acceptor with a flexible conjugation-break spacer (FCBS), three batches of acceptors, named PYTS, were synthesized with different number-average Mn from 9, 13 to 19 kDa. Blends with a polymer donor PBDB-T, the all-PSCs based on PYTS with Mn of 9 kDa and 19 kDa, exhibit power conversion efficiencies (PCEs) of 5.99% and 9.43%, respectively, primarily due to the increased short-circuit current density (Jsc) from 13.02 to 18.73 mA cm−2. To disclose the impact of Mn on device performance, dynamics of mixed PBDB-T:PYTS solutions to solid BHJs is studied by monitoring the drying process with home-made in situ multifunctional spectroscopy, which demonstrates that PYTS with Mn of 19 kDa has a longer drying time than the PYTS with Mn of 9 kDa. Prolonged drying of the BHJs with higher Mn PYTS facilitates more tightly packed structures with higher crystallinity. A systematic investigation on the nanostructures of BHJs, charge generation, transport and recombination is carried out with grazing-incidence wide-angle X-ray scattering (GIWAXS), transient absorption spectroscopy (TAS) and characterization of all-PSCs. The results indicate that increased crystallinity in the BHJs benefits exciton dissociation, electron transport, prolonged carrier lifetimes, and decreased non-geminate recombination rate constants in the corresponding devices. Combining the in situ study of drying and the investigation on films and devices provides us a comprehensive understanding of the interplay between Mn, the drying process, the nanostructures of BHJs and device performance. This work not only emphasizes the essential role of Mn in governing the device performance, but also exhibits recorded film formation through the in situ spectroscopy, enabling us to manipulate the nanostructure of BHJs by optimizing Mn of polymers and processing parameters.
  •  
10.
  • Zhang, Jianyun, et al. (författare)
  • Revealing the Critical Role of the HOMO Alignment on Maximizing Current Extraction and Suppressing Energy Loss in Organic Solar Cells
  • 2019
  • Ingår i: iScience. - : Cell Press. - 2589-0042. ; 19, s. 883-893
  • Tidskriftsartikel (refereegranskat)abstract
    • For state-of-the-art organic solar cells (OSCs) consisting of a large-bandgap polymer donor and a near-infrared (NIR) molecular acceptor, the control of the HOMO offset is the key to simultaneously achieve small energy loss (Eloss) and high photocurrent. However, the relationship between HOMO offsets and the efficiency for hole separation is quite elusive so far, which requires a comprehensive understanding on how small the driving force can effectively perform the charge separation while obtaining a high photovoltage to ensure high OSC performance. By designing a new family of ZITI-X NIR acceptors (X = S, C, N) with a high structural similarity and matching them with polymer donor J71 forming reduced HOMO offsets, we systematically investigated and established the relationship among the photovoltaic performance, energy loss, and hole-transfer kinetics. We achieved the highest PCEavgs of 14.05 ± 0.21% in a ternary system (J71:ZITI-C:ZITI-N) that best optimize the balance between driving force and energy loss.
  •  
11.
  • Bi, Zhaozhao, et al. (författare)
  • Individual nanostructure optimization in donor and acceptor phases to achieve efficient quaternary organic solar cells
  • 2019
  • Ingår i: Nano Energy. - : ELSEVIER. - 2211-2855 .- 2211-3282. ; 66
  • Tidskriftsartikel (refereegranskat)abstract
    • Fullerene derivative (PC71BM) and high crystallinity molecule (DR3TBDTT) are employed into PTB7-Th:FOIC based organic solar cells (OSCs) to cooperate an individual nanostructure optimized quaternary blend. PC71BM functions as molecular adjuster and phase modifier promoting FOIC forming "head-to-head" molecular packing and neutralizing the excessive FOIC crystallites. A multi-scale modified morphology is present thanks to the mixture of FOIC and PC71BM while DR3TBDTT disperses into PTB7-Th matrix to reinforce donors crystal-linity and enhance domain purity. Morphology characterization highlights the importance of individually optimizated nanostructures for donor and acceptor, which contributes to efficient hole and electron transport toward improved carrier mobilities and suppressed non-geminated recombination. Therefore, a power conversion efficiency of 13.51% is realized for a quaternary device which is 16% higher than the binary device (PTB7-Th:FOIC). This work demonstrates that utilizing quaternary strategy for simultaneous optimization of donor and acceptor phases is a feasible way to realize high efficient OSCs.
  •  
12.
  • Chen, Youchun, et al. (författare)
  • Insights into the working mechanism of cathode interlayers in polymer solar cells via [(C8H17)(4)N](4)[SiW12O40]
  • 2016
  • Ingår i: Journal of Materials Chemistry A. - : ROYAL SOC CHEMISTRY. - 2050-7488 .- 2050-7496. ; 4:48, s. 19189-19196
  • Tidskriftsartikel (refereegranskat)abstract
    • A low-cost (amp;lt;$1 per g), high-yield (amp;gt;90%), alcohol soluble surfactant-encapsulated polyoxometalate complex [(C8H17)(4)N](4)[SiW12O40] has been synthesized and utilized as a cathode interlayer (CIL) in polymer solar cells (PSCs). A power conversion efficiency of 10.1% can be obtained for PSCs based on PTB7-Th (poly[[2,6-4,8-di(5-ethylhexylthienyl) benzo[1,2-b;3,3-b]-dithiophene][3-fluoro-2[(2-ethylhexyl) carbonyl] thieno [3,4-b]-thiophenediyl]]):PC71BM ([6,6]-phenyl C71-butyric acidmethyl ester) due to the incorporation of [(C8H17)(4)N](4)[SiW12O40]. Combined measurements of current density-voltage characteristics, transient photocurrent, charge carrier mobility and capacitance-voltage characteristics demonstrate that [(C8H17)(4)N](4)[SiW12O40] can effectively increase the built-in potential, charge carrier density and mobility and accelerate the charge carrier extraction in PSCs. Most importantly, the mechanism of using [(C8H17)(4)N](4)[SiW12O40] as the CIL is further brought to light by X-ray photoemission spectroscopy (XPS) and ultraviolet photoemission spectroscopy (UPS) of the metal/ [(C8H17)(4)N](4)[SiW12O40] interface. The findings suggest that [(C8H17)(4)N](4)[SiW12O40] not only decreased the work function of the metal cathodes but also was n-doped upon contact with the metals, which provide insights into the working mechanism of the CILs simultaneously improving the open circuit voltage, short circuit current and fill factor in the PSCs.
  •  
13.
  • Feng, Guitao, et al. (författare)
  • “Double-Cable” Conjugated Polymers with Linear Backbone toward High Quantum Efficiencies in Single-Component Polymer Solar Cells
  • 2017
  • Ingår i: Journal of the American Chemical Society. - : AMER CHEMICAL SOC. - 0002-7863 .- 1520-5126. ; 139:51, s. 18647-18656
  • Tidskriftsartikel (refereegranskat)abstract
    • A series of "double-cable" conjugated polymers were developed for application in efficient single-component polymer solar cells, in which high quantum efficiencies could be achieved due to the optimized nanophase separation between donor and acceptor parts. The new double-cable polymers contain electron-donating poly(benzodithiophene) (BDT) as linear conjugated backbone for hole transport and pendant electron-deficient perylene bisimide (PBI) units for electron transport, connected via a dodecyl linker. Sulfur and fluorine substituents were introduced to tune the energy levels and crystallinity of the conjugated polymers. The double-cable polymers adopt a "face-on" orientation in which the conjugated BDT backbone and the pendant PBI units have a preferential pi-pi stacking direction perpendicular to the substrate, favorable for interchain charge transport normal to the plane. The linear conjugated backbone acts as a scaffold for the crystallization of the PBI groups, to provide a double-cable nanophase separation of donor and acceptor phases. The optimized nanophase separation enables efficient exciton dissociation as well as charge transport as evidenced from the high-up to 80%-internal quantum efficiency for photon-to-electron conversion. In single-component organic solar cells, the double-cable polymers provide power conversion efficiency up to 4.18%. This is one of the highest performances in single-component organic solar cells. The nanophase-separated design can likely be used to achieve high-performance single-component organic solar cells.
  •  
14.
  • Jin, Yingzhi, et al. (författare)
  • Limitations and Perspectives on Triplet-Material-Based Organic Photovoltaic Devices
  • 2019
  • Ingår i: Advanced Materials. - : WILEY-V C H VERLAG GMBH. - 0935-9648 .- 1521-4095. ; 31:22
  • Tidskriftsartikel (refereegranskat)abstract
    • Organic photovoltaic cells (OPVs) have attracted broad attention and become a very energetic field after the emergence of nonfullerene acceptors. Long-lifetime triplet excitons are expected to be good candidates for efficiently harvesting a photocurrent. Parallel with the development of OPVs based on singlet materials (S-OPVs), the potential of triplet materials as photoactive layers has been explored. However, so far, OPVs employing triplet materials in a bulk heterojunction have not exhibited better performance than S-OPVs. Here, the recent progress of representative OPVs based on triplet materials (T-OPVs) is briefly summarized. Based on that, the performance limitations of T-OPVs are analyzed. The shortage of desired triplet materials with favorable optoelectronic properties for OPVs, the tradeoff between long lifetime and high binding energy of triplet excitons, as well as the low charge mobility in most triplet materials are crucial issues restraining the efficiencies of T-OPVs. To overcome these limitations, first, novel materials with desired optoelectronic properties are urgently demanded; second, systematic investigation on the contribution and dynamics of triplet excitons in T-OPVs is necessary; third, close multidisciplinary collaboration is required, as proved by the development of S-OPVs.
  •  
15.
  • Li, Weiwei, et al. (författare)
  • Tailoring side chains of low band gap polymers for high efficiency polymer solar cells
  • 2010
  • Ingår i: Polymer. - : Elsevier Science B.V., Amsterdam.. - 0032-3861 .- 1873-2291. ; 51:14, s. 3031-3038
  • Tidskriftsartikel (refereegranskat)abstract
    • High efficiency organic solar cells (OSCs) require conjugated polymers with a low band gap, broad absorption in visible and IR region, high carrier mobility, and relatively high molecular weight as p-type donor materials. Flexible side chains on the rigid polymer backbone are crucial for the solubility of conjugated polymers. In this work, four polymers with the main chain structure of fluorene-thiophene-benzothiadiazole-thiophene and flexible side chains located on fluorene, thiophene, and benzothiadiazole moiety, respectively, have been synthesized by Suzuki-Miyaura-Schluter polycondensation. Photovoltaic device measurements with a device configuration of ITO/polymer:PC71BM blends/LiF/Al show that P1 carrying octyloxy chains on benzothiadiazole rings gives the best performance, with a power conversion efficiency of 3.1%.
  •  
16.
  • Liu, Yanfeng, et al. (författare)
  • Electric Field Facilitating Hole Transfer in Non-Fullerene Organic Solar Cells with a Negative HOMO Offset
  • 2020
  • Ingår i: The Journal of Physical Chemistry C. - : AMER CHEMICAL SOC. - 1932-7447 .- 1932-7455. ; 124:28, s. 15132-15139
  • Tidskriftsartikel (refereegranskat)abstract
    • The record high photoinduced current and power conversion efficiencies of organic solar cells (OSCs) should be attributed to the significant contribution of non-fullerene electron acceptors via hole transfer to electron donors and/or a pronounced decrease in energy losses for exciton dissociation by aligned highest occupied molecular orbitals (HOMOs) or lowest unoccupied molecular orbitals (LUMOs). However, the hole transfer mechanism in those highly efficient non-fullerene OSCs with small HOMO offsets has not been extensively studied and fully understood, yet. Herein, we comparatively study the hole transfer kinetics in two OSCs with a positive (0.05 eV) and a negative (-0.07 eV) HOMO offset (Delta HOMO) based on polymer donor PTQ10 paired with non-fullerene acceptors ZITI-C or ZITI-N. Short-circuit current densities (J(sc)) of 20.42 and 12.81 mA cm(-2) are achieved in the OSCs based on PTQ10:ZITI-C (Delta HOMO = 0.05 eV) and PTQ10:ZITI-N (Delta HOMO = -0.07 eV) with an optimized donor (D):acceptor (A) ratio of 1:1, respectively, despite the small and even negative Delta HOMO. Results from time-resolved transient absorption spectroscopy show slower hole transfer (14.3 ps) in PTQ10:ZITI-N than that (3.7 ps) in PTQ10:ZITI-C. To understand the decent J(sc) value in the OSCs of PTQ10:ZITI-N, the temperature and electric field dependences of hole transfer are investigated in low-donor-content OSCs (D:A ratio of 1:9) in which photocurrent is dominated by the contribution via hole transfer from ZITI-N to PTQ10. Devices based on PTQ10:ZITI-C and PTQ10:ZITI-N show similar free charge generation behavior as a function of temperature, whereas the external quantum efficiencies of the PTQ10:ZITI-N device exhibit a much stronger bias dependence than that of PTQ10:ZITI-C, which suggests that the electric field facilitates exciton dissociation in PTQ10:ZITI-N where the energetic driving force alone cannot efficiently dissociate excitons.
  •  
17.
  • Liu, Yanfeng, et al. (författare)
  • In Situ Optical Studies on Morphology Formation in Organic Photovoltaic Blends
  • 2021
  • Ingår i: Small Methods. - : John Wiley & Sons. - 2366-9608. ; 5:10, s. 1-12
  • Tidskriftsartikel (refereegranskat)abstract
    • The efficiency of bulk heterojunction (BHJ) based organic solar cells is highly dependent on the morphology of the blend film, which is a result of a fine interplay between donor, acceptor, and solvent during the film drying. In this work, a versatile set-up of in situ spectroscopies is used to follow the morphology evolution during blade coating of three iconic BHJ systems, including polymer:fullerene, polymer:nonfullerene small molecule, and polymer:polymer. the drying and photoluminescence quenching dynamics are systematically study during the film formation of both pristine and BHJ films, which indicate that the component with higher molecular weight dominates the blend film formation and the final morphology. Furthermore, Time-resolved photoluminescence, which is employed for the first time as an in situ method for such drying studies, allows to quantitatively determine the extent of dynamic and static quenching, as well as the relative change of quantum yield during film formation. This work contributes to a fundamental understanding of microstructure formation during the processing of different blend films. The presented setup is considered to be an important tool for the future development of blend inks for solution-cast organic or hybrid electronics.
  •  
18.
  • Pan, W. W., et al. (författare)
  • Optical properties and band bending of InGaAs/GaAsBi/InGaAs type-II quantum well grown by gas source molecular beam epitaxy
  • 2016
  • Ingår i: Journal of Applied Physics. - : AIP Publishing. - 0021-8979 .- 1089-7550. ; 120:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Photoluminescence (PL) properties of In0.2Ga0.8As/GaAs0.96Bi0.04/In0.2Ga0.8As quantum well (QW) grown on GaAs substrates by gas source molecular beam epitaxy were studied by varying excitation power and temperature, respectively. The type-II transition energy shifts from 1.149 eV to 1.192 eV when increasing the excitation power from 10 mW to 150 mW at 4.5 K, which was ascribed to the band-bending effect. On the other hand, the type-II PL quenches quickly along with fast redshift with the increasing temperature due to the relaxation of the band bending caused by the thermal excitation process. An 8 band k.p model was used to analyze the electronic properties and the band-bending effect in the type-II QW. The calculated subband levels and transition energy fit well with the experiment results, and two thermal activation energies of 8.7 meV and 50 meV, respectively, are deduced. Published by AIP Publishing.
  •  
19.
  • Qian, Deping, et al. (författare)
  • Design rules for minimizing voltage losses in high-efficiency organic solar cells
  • 2018
  • Ingår i: Nature Materials. - : NATURE PUBLISHING GROUP. - 1476-1122 .- 1476-4660. ; 17:8, s. 703-
  • Tidskriftsartikel (refereegranskat)abstract
    • The open-circuit voltage of organic solar cells is usually lower than the values achieved in inorganic or perovskite photovoltaic devices with comparable bandgaps. Energy losses during charge separation at the donor-acceptor interface and non-radiative recombination are among the main causes of such voltage losses. Here we combine spectroscopic and quantum-chemistry approaches to identify key rules for minimizing voltage losses: (1) a low energy offset between donor and acceptor molecular states and (2) high photoluminescence yield of the low-gap material in the blend. Following these rules, we present a range of existing and new donor-acceptor systems that combine efficient photocurrent generation with electroluminescence yield up to 0.03%, leading to non-radiative voltage losses as small as 0.21 V. This study provides a rationale to explain and further improve the performance of recently demonstrated high-open-circuit-voltage organic solar cells.
  •  
20.
  • Wang, Ergang, 1981, et al. (författare)
  • An Easily Accessible Isoindigo-Based Polymer for High-Performance Polymer Solar Cells
  • 2011
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 1520-5126 .- 0002-7863. ; 133:36, s. 14244-14247
  • Tidskriftsartikel (refereegranskat)abstract
    • A new, low-band-gap alternating copolymer consisting of terthiophene and isoindigo has been designed and synthesized. Solar cells based on this polymer and PC(71)BM show a power conversion efficiency of 6.3%, which is a record for polymer solar cells based on a polymer with an optical band gap below 1.5 eV. This work demonstrates the great potential of isoindigo moieties as electron-deficient units for building donor-acceptor-type polymers for high-performance polymer solar cells.
  •  
21.
  • Wang, Ergang, 1981, et al. (författare)
  • An isoindigo-based low band gap polymer for efficient polymer solar cells with high photo-voltage
  • 2011
  • Ingår i: Chemical Communications. - : Royal Society of Chemistry (RSC). - 1364-548X .- 1359-7345. ; 47:17, s. 4908-4910
  • Tidskriftsartikel (refereegranskat)abstract
    • A new low band gap polymer (E-g = 1.6 eV) with alternating thiophene and isoindigo units was synthesized and characterized. A PCE of 3.0% and high open-circuit voltage of 0.89 V were realized in polymer solar cells, which demonstrated the promise of isoindigo as an electron deficient unit in the design of donor-acceptor conjugated polymers for polymer solar cells.
  •  
22.
  • Xia, Xinxin, et al. (författare)
  • Revealing the crystalline packing structure of Y6 in the active layer of organic solar cells: the critical role of solvent additives
  • 2023
  • Ingår i: Journal of Materials Chemistry A. - : ROYAL SOC CHEMISTRY. - 2050-7488 .- 2050-7496. ; 11:40, s. 21895-21907
  • Tidskriftsartikel (refereegranskat)abstract
    • The bulk heterojunction (BHJ) morphology of photovoltaic materials is crucial to the fundamental optoelectronic properties of organic solar cells (OSCs). However, in the photoactive layer, the intrinsic crystalline packing structure of Y6, currently the hallmark molecule among Y-series non-fullerene acceptors (NFAs), has not been unambiguously determined. Here, employing grazing-incidence wide-angle X-ray scattering (GIWAXS), we managed to uncover the intrinsic crystalline packing structure of Y6 in the BHJ active layer of OSCs, which is found to be different from its single-crystal structure reported previously. Moreover, we find that solvent additive 1-chloronaphthalene (CN) can induce highly ordered packing of Y6 in BHJ thin films. With the help of atomistic molecular dynamics simulations, it is revealed that pi-pi interactions generally exist between naphthalene derivatives and IC terminals of Y6 analogues, which would essentially improve their long-range ordering. Our work reveals the intrinsic crystalline packing structure of Y6 in the BHJ active layer as well as its crystallization mechanism in thin films, thus providing direct correlations between this crystalline packing and the device characteristics and photophysical properties.
  •  
23.
  • Xu, Bo, et al. (författare)
  • Integrated Design of Organic Hole Transport Materials for Efficient Solid-State Dye-Sensitized Solar Cells
  • 2015
  • Ingår i: Advanced Energy Materials. - : Wiley. - 1614-6832 .- 1614-6840. ; 5:3
  • Tidskriftsartikel (refereegranskat)abstract
    • A series of triphenylamine-based small molecule organic hole transport materials (HTMs) with low crystallinity and high hole mobility are systematically investigated in solid-state dye-sensitized solar cells (ssDSCs). By using the organic dye LEG4 as a photosensitizer, devices with X3 and X35 as the HTMs exhibit desirable power conversion efficiencies (PCEs) of 5.8% and 5.5%, respectively. These values are slightly higher than the PCE of 5.4% obtained by using the state-of-the-art HTM Spiro-OMeTAD. Meanwhile, transient photovoltage decay measurement is used to gain insight into the complex influences of the HTMs on the performance of devices. The results demonstrate that smaller HTMs induce faster electron recombination in the devices and suggest that the size of a HTM plays a crucial role in device performance, which is reported for the first time.
  •  
24.
  • Yang, Yi, et al. (författare)
  • Solution-Processable Organic Molecule with Triphenylamine Core and Two Benzothiadiazole-Thiophene Arms for Photovoltaic Application
  • 2010
  • Ingår i: JOURNAL OF PHYSICAL CHEMISTRY C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 114:8, s. 3701-3706
  • Tidskriftsartikel (refereegranskat)abstract
    • A new solution-processable biarmed organic molecule With triphenylamine (TPA) core and benzothiadiazole-hexylthiophene (BT-HT) arms, B(TPA-BT-HT), has been synthesized by a Heck reaction, and characterized by UV-vis absorption, cyclic voltammetry, and theoretical calculation. Photovoltaic properties of B(TPA-BT-HT) as light-harvesting and electron-donating material in organic solar cells (OSCs), with [6,6]-phenyl-C61-butyric acid methyl ester (PC60BM) or [6,6]-phenyl-C71-butyric acid methyl ester (PC70BM) as acceptors, were systematically investigated. The performance of the OSCs varied significantly with B(TPA-BT-HT)/fullerene weight ratio, active layer thickness, and solvents Used For spin-coating the active layer. The optimized device with the B(TPA-BT-HT)/PC70BM weight ratio of 1:2 and a thickness of 55 nm with the active layer spin-coated from DCB solution Shows a power conversion efficiency of 1.96% with a short-circuit current density of 5.50 mA/cm(2) and in open-circuit voltage of 0.96 V under (lie illumination of AM 1.5, 100 mw/cm(2).
  •  
25.
  • Yao, Nannan, et al. (författare)
  • In Situ Study the Dynamics of Blade-Coated All-Polymer Bulk Heterojunction Formation and Impact on Photovoltaic Performance of Solar Cells
  • 2023
  • Ingår i: Solar RRL. - : John Wiley & Sons. - 2367-198X. ; , s. 1-8
  • Tidskriftsartikel (refereegranskat)abstract
    • All-polymer solar cells (all-PSCs) have achieved impressive progress by employing acceptors polymerized from well performing small-molecule non-fullerene acceptors. Herein, the device performance and morphology evolution in blade-coated all-PSCs based on PBDBT:PF5–Y5 blends prepared from two different solvents, chlorobenzene (CB), and ortho-xylene (o-XY) are studied. The absorption spectra in CB solution indicate more ordered conformation for PF5–Y5. The drying process of PBDBT:PF5–Y5 blends is monitored by in situ multifunctional spectroscopy and the final film morphology is characterized with ex situ techniques. Finer-mixed donor/acceptor nanostructures are obtained in CB-cast film than that in o-XY-cast ones, corresponding to more efficient charge generation in the solar cells. More importantly, the conformation of polymers in solution determines the overall film morphology and the device performance. The relatively more ordered structure in CB-cast films is beneficial for charge transport and reduced non-radiative energy loss. Therefore, to achieve high-performance all-PSCs with small energy loss, it is crucial to gain favorable aggregation in the initial stage in solution.
  •  
26.
  • Zheng, Wenhao, et al. (författare)
  • Dual Function of UV/Ozone Plasma-Treated Polymer in Polymer/Metal Hybrid Electrodes and Semitransparent Polymer Solar Cells
  • 2017
  • Ingår i: ACS Applied Materials and Interfaces. - : AMER CHEMICAL SOC. - 1944-8244 .- 1944-8252. ; 9:51, s. 44656-44666
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, high-performance inverted indium tin oxide (ITO)-free semitransparent polymer solar cells are comprehensively investigated using a novel polymer/metal hybrid transparent electrode. The electrical and optical characteristics of hybrid electrodes are significantly enhanced by introducing UV/ozone plasma treatment on the polymer poly[(9,9-bis(3-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFN), which is functioned as both a seed layer for ultrathin Ag metal electrode and an optical spacer for transparent devices. The optimized sheet resistance of PFN/Ag (12 nm) hybrid electrode is only half of the commercial ITO (9.4 vs 20.0 Omega sq(-1)) and the high wavelength-dependent reflectance of hybrid electrode helps to increase the ITO-free device short-circuit current density. Furthermore, the interface property between PFN and ultrathin Ag is analyzed in detail and the optical field distribution is calculated for comparison. A high power conversion efficiency of 5.02%, which is increased by 35% compared to that of the ITO-based device, is achieved in the ITO-free semitransparent device in conjunction with an excellent average visible transmittance above 28% that is higher than the benchmark of 25% for power-generating window, indicating its great potential in building integrated photovoltaic systems in the future. Furthermore, the strategy is successfully developed for other polymer systems, suggesting the universal applicability for plastic electronics.
  •  
27.
  •  
28.
  • Admassie, Shimelis, et al. (författare)
  • A polymer photodiode using vapour-phase polymerized PEDOT as an anode
  • 2006
  • Ingår i: Solar Energy Materials & Solar Cells. ; 90:2, s. 133-141
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the photovoltaic properties of devices made using a highly conducting polymer electrode, from vapor-phase polymd. poly (3,4-ethylenedioxy) thiophene (VPP PEDOT) on glass substrate as an anode and a polyfluorene copolymer poly[2,7-(9,9-dioctyl-fluorene)-alt-5,5-(4',7'-di-2thienyl-2',1'3'-benzothiadiazole)] (APFO-3) mixed with [6,6]-phenyl-C61-butyric acid methylester (PCBM) in the ratio of 1:4 as the active layer. The device performance was compared with that of devices made with PEDOT-PSS on glass substrates. The surfaces of VPP PEDOT were imaged using at. force microscopy (AFM). [on SciFinder (R)]
  •  
29.
  • Admassie, Shimelis, et al. (författare)
  • Synthesis, optical and electrochemical characterization of anthrancene and benzothiadiazole-containing polyfluorene copolymers
  • 2006
  • Ingår i: Bulletin of the Chemical Society of Ethiopia. - 1011-3924 .- 1726-801X. ; 20:2, s. 309-317
  • Tidskriftsartikel (refereegranskat)abstract
    • New solution-processable, anthrancene- and benzothiadiazole-containing polyfluorene copolymers (P1-P3) have been synthesized and characterized. The preparation and characterization of the corresponding blue light-emitting devices are also reported. Polymers P2 and P3 show high photoluminescence efficiency while polymer P2 does not show any significant light emission up to 8.0 V. The results show the need for balance of electron and hole transport in polymer light emitting diodes.
  •  
30.
  • Andersson, Lars Mattias, et al. (författare)
  • Bipolar transport observed through extraction currents on organic photovoltaic blend materials
  • 2006
  • Ingår i: Applied Physics Letters. - : AIP Publishing. - 0003-6951 .- 1077-3118. ; 89, s. 142111-
  • Tidskriftsartikel (refereegranskat)abstract
    • Both electron and hole mobilities have been simultaneously measured through charge extraction by linearly increasing voltage on polymer heterojunction solar cells with varying stoichiometry of polymer and acceptor. The polymer is a low band gap copolymer of fluorene, thiophene, and electron accepting groups named APFO-Green 5, and the acceptor is [6,6]-phenyl-C61-butyric acid methylester. Results are correlated to field effect transistor measurements on the same material system. A monotonous increase in mobility for both carrier types is observed with increased acceptor loading.
  •  
31.
  • Andersson, Lars Mattias, et al. (författare)
  • Stoichiometry, mobility, and performance in bulk heterojunction solar cells
  • 2007
  • Ingår i: Applied Physics Letters. - : AIP Publishing. - 0003-6951 .- 1077-3118. ; 91:7, s. 071108-
  • Tidskriftsartikel (refereegranskat)abstract
    • Bipolar transport in blends of a copolymer of fluorene, thiophene and electron accepting groups, and the substituted fullerene [6,6]-phenyl-C61-butyric acid methylester have been studied through charge extraction by linearly increasing voltage on solar cells and with field effect transistors. Between 10% and 90% polymer has been used and the results show a clear correlation to solar cell performance. Optimal solar cells comprise 20% polymer and have a power conversion efficiency of 3.5%. The electron mobility is increasing strongly with fullerene content, but is always lower than the hole mobility, thus explaining the low amount of polymer in optimized devices.
  •  
32.
  • Andersson, Mattias, et al. (författare)
  • Mobility and fill factor correlation in geminate recombination limited solar cells
  • 2011
  • Ingår i: Journal of Applied Physics. - : American Institute of Physics (AIP). - 0021-8979 .- 1089-7550. ; 110:2, s. 024509-
  • Tidskriftsartikel (refereegranskat)abstract
    • Empirical data for the fill factor as a function of charge carrier mobility for two different polymer: fullerene systems is presented and analyzed. The results indicate that charge extraction depth limitations and space charge effects are inconsistent with the observed behavior, and the decrease in the fill factor is, instead, attributed to the field-dependent charge separation and geminate recombination. A solar cell photocurrent limited by the Onsager-Braun charge transfer exciton dissociation is shown to be able to accommodate the experimental observations. Charge dissociation limited solar cells always benefit from increased mobilities, and the negative contribution from the reduced charge separation is shown to be much more important for the fill factor in these material systems than any adverse effects from charge carrier extraction depth limitations or space charge effects due to unbalanced mobilities. The logarithmic dependence of the fill factor on the mobility for such a process is also shown to imply that simply increasing the mobilities is an impractical way to reach very high fill factors under these conditions since unrealistically high mobilities are required. A more controlled morphology is, instead, argued to be necessary for high performance.
  •  
33.
  •  
34.
  • Bai, Sai, et al. (författare)
  • Electrophoretic deposited oxide thin films as charge transporting interlayers for solution-processed optoelectronic devices: the case of ZnO nanocrystals
  • 2015
  • Ingår i: RSC Advances. - : Royal Society of Chemistry. - 2046-2069. ; 5:11, s. 8216-8222
  • Tidskriftsartikel (refereegranskat)abstract
    • A promising fabrication method of electron transporting interlayers for solution-processed optoelectronic devices by electrophoretic deposition (EPD) of colloidal zinc oxide (ZnO) nanocrystals was demonstrated. A low voltage of 3-5 V and a short deposition time of 40 s at room temperature were found to be sufficient to generate dense and uniform ZnO thin films. The EPD ZnO nanocrystal films were applied as ETLs for inverted organic solar cell and polymer light emitting diodes (PLEDs). By optimizing the EPD processing of ZnO nanocrystal electron transporting layers (ETLs), inverted organic solar cells based on [3,4-b]-thiophene/benzodithiophene (PTB7): [6-6]-phenyl-C71-butyric acid methyl ester (PC71BM) and poly(3-hexylthiophene) (P3HT): [6-6]-phenyl-C-61-butyric acid methyl ester (PC61BM) with an average PCE of 8.4% and 4.0% were fabricated. In combination with the PLEDs and flexible devices results, we conclude that the EPD processed ZnOnanocrystal thin films can serve as high quality ETLs for solution-processed optoelectronic devices.
  •  
35.
  • Bai, Sai, et al. (författare)
  • Ethanedithiol Treatment of Solution-Processed ZnO Thin Films: Controlling the Intragap States of Electron Transporting Interlayers for Efficient and Stable Inverted Organic Photovoltaics
  • 2015
  • Ingår i: Advanced Energy Materials. - : Wiley-VCH Verlag. - 1614-6832 .- 1614-6840. ; 5:5, s. 1401606-
  • Tidskriftsartikel (refereegranskat)abstract
    • The surface defects of solution-processed ZnO films lead to various intragap states. When the solution-processed ZnO films are used as electron transport interlayers (ETLs) in inverted organic solar cells, the intragap states act as interfacial recombination centers for photogenerated charges and thereby degrade the device performance. Here, a simple passivation method based on ethanedithiol (EDT) treatment is demonstrated, which effectively removes the surface defects of the ZnO nanocrystal films by forming zinc ethanedithiolates. The passivation by EDT treatment modulates the intragap states of the ZnO films and introduces a new intragap band. When the EDT-treated ZnO nanocrystal films are used as ETLs in inverted organic solar cells, both the power conversion efficiency and stability of the devices are improved. The control studies show that the solar cells with EDT-treated ZnO films exhibit reduced charge recombination rates and enhanced charge extraction properties. These features are consistent with the fact that the modulation of the intragap states results in reduction of interfacial recombination as well as the improved charge selectivity and electron transport properties of the ETLs. It is further demonstrated that the EDT treatment-based passivation method can be extended to ZnO films deposited from sol-gel precursors.
  •  
36.
  •  
37.
  •  
38.
  • Barrau, Sophie, et al. (författare)
  • Nanomorphology of Bulk Heterojunction Organic Solar Cells in 2D and 3D Correlated to Photovoltaic Performance
  • 2009
  • Ingår i: Macromolecules. - : American Chemical Society (ACS). - 0024-9297 .- 1520-5835. ; 42:13, s. 4646-4650
  • Tidskriftsartikel (refereegranskat)abstract
    • Control of the nanoscale morphology of the donor-acceptor material blends inorganic solar Cells is critical for optimizing the photovoltaic performances. The influence of intrinsic (acceptor materials) and extrinsic (donor:acceptor weight ratio, substrate, solvent) parameters was investigated, by atomic force microscopy (AFM) and electron tomography (ET), on the nanoscale phase separation of blends of a low-band-gap alternating polyfluorene copolymers (APFO-Green9) with [6,6]-phenyl-C-71-butyric acid methyl ester ([70]PCBM). The photovoltaic performances display an optimal efficiency for the device elaborated with a 1:3 APFO-Green polymer:[70][PCBM weight ratio and spin-coated from chloroform solution. The associated active layer morphology presents small phase-separated domains which is a good balance between as a large interfacial donor-acceptor area and Continuous paths of the donor and acceptor phases to the electrodes.
  •  
39.
  • Bjoerstroem, Cecilia M., et al. (författare)
  • Influence of solvents and substrates on the morphology and the performance of low-bandgap polyfluorene: PCBM photovoltaic devices
  • 2006
  • Ingår i: Proceedings of SPIE-The International Society for Optical Engineering. ; 6192, s. 61921X/1-
  • Konferensbidrag (refereegranskat)abstract
    • Spin-coated thin films of poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (APFO-3) blended with [6,6]-phenyl-C61-butyric acid Me ester (PCBM) are used as the active material in polymer photovoltaic cells. Such blends are known for their tendency to phase sep. during film formation. Tuning the morphol. of the blend in a controlled way is one possible road towards higher efficiency. We studied the effect of adding chlorobenzene to chloroform-based blend solns. before spin-coating on the conversion efficiency of APFO-3:PCBM photodiodes, and related that to the lateral and vertical morphol. of thin films of the blend. The lateral morphol. is imaged by at. force microscopy (AFM) and the vertical compositional profile is obtained by dynamic secondary ion mass spectrometry (SIMS). The profiles reveal compositional variations consisting of multilayers of alternating polymer-rich and PCBM-rich domains in the blend film spin-coated from chloroform. The vertical compositional variations are caused by surface-directed spinodal waves and are frozen in during the rapid evapn. of a highly volatile solvent. With addn. of the low-vapor pressure solvent chlorobenzene, a more homogeneous vertical compn. is found. The conversion efficiency for solar cells of this blend was found to be optimal for chloroform:chlorobenzene mixts. with a vol.-ratio of 80:1. We have also investigated the role of the substrate on the morphol. We found that blend films spin-coated from chloroform solns. on PEDOT:PSS-coated ITO show a similar compositional structure as the films on silicon, and that changing the substrate from silicon to gold only affects the vertical phase sepn. in a region close to the substrate interface. [on SciFinder (R)]
  •  
40.
  • Bjorstrom, Cecilia M., et al. (författare)
  • Influence of solvents and substrates on the morphology and the performance of low-bandgap polyfluorene: PCBM photovoltaic devices - art. no. 61921X
  • 2006
  • Ingår i: Proceedings of SPIE, the International Society for Optical Engineering. - : International Society for Optical Engineering; 1999. - 0277-786X .- 1996-756X. ; 6192, s. X1921-X1921
  • Tidskriftsartikel (refereegranskat)abstract
    • Spin-coated thin films of poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-5,5-(4,7-di-2-thienyl-2,1,3-benzothiadiazole)] (APFO-3) blended with [6,6]-phenyl-C-61-butyric acid methyl ester (PCBM) are used as the active material in polymer photovoltaic cells. Such blends are known for their tendency to phase separate during film formation. Tuning the morphology of the blend in a controlled way is one possible road towards higher efficiency. We studied the effect of adding chlorobenzene to chloroform-based blend solutions before spin-coating on the conversion efficiency of APFO-3:PCBM photodiodes, and related that to the lateral and vertical morphology of thin films of the blend. The lateral morphology is imaged by atomic force microscopy (AFM) and the vertical compositional profile is obtained by dynamic secondary ion mass spectrometry (SIMS). The profiles reveal compositional variations consisting of multilayers of alternating polymer-rich and PCBM-rich domains in the blend film spin-coated from chloroform. The vertical compositional variations are caused by surface-directed spinodal waves and are frozen in during the rapid evaporation of a highly volatile solvent. With addition of the low-vapour pressure solvent chlorobenzene, a more homogeneous vertical composition is found. The conversion efficiency for solar cells of this blend was found to be optimal for chloroform: chlorobenzene mixtures with a volume-ratio of 80:1. We have also investigated the role of the substrate on the morphology. We found that blend films spin-coated from chloroform solutions on PEDOT:PSS-coated ITO show a similar compositional structure as the films on silicon, and that changing the substrate from silicon to gold only affects the vertical phase separation in a region close to the substrate interface.
  •  
41.
  •  
42.
  • Björström, Cecilia M., et al. (författare)
  • Influence of solvents and substrates on the morphology and the performance of low-bandgap polyfluorene:PCBM photovoltaic devices
  • 2006
  • Ingår i: Proceedings of SPIE, the International Society for Optical Engineering. - Cardiff : SPIE - International Society for Optical Engineering. - 0277-786X .- 1996-756X. ; 6192, s. 61921X-
  • Tidskriftsartikel (refereegranskat)abstract
    • Spin-coated thin films of poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (APFO-3) blended with [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) are used as the active material in polymer photovoltaic cells. Such blends are known for their tendency to phase separate during film formation. Tuning the morphology of the blend in a controlled way is one possible road towards higher efficiency. We studied the effect of adding chlorobenzene to chloroform-based blend solutions before spin-coating on the conversion efficiency of APFO-3:PCBM photodiodes, and related that to the lateral and vertical morphology of thin films of the blend. The lateral morphology is imaged by atomic force microscopy (AFM) and the vertical compositional profile is obtained by dynamic secondary ion mass spectrometry (SIMS). The profiles reveal compositional variations consisting of multilayers of alternating polymer-rich and PCBM-rich domains in the blend film spin-coated from chloroform. The vertical compositional variations are caused by surface-directed spinodal waves and are frozen in during the rapid evaporation of a highly volatile solvent. With addition of the low-vapour pressure solvent chlorobenzene, a more homogeneous vertical composition is found. The conversion efficiency for solar cells of this blend was found to be optimal for chloroform:chlorobenzene mixtures with a volume-ratio of 80:1. We have also investigated the role of the substrate on the morphology. We found that blend films spin-coated from chloroform solutions on PEDOT:PSS-coated ITO show a similar compositional structure as the films on silicon, and that changing the substrate from silicon to gold only affects the vertical phase separation in a region close to the substrate interface
  •  
43.
  • Cai, Tianqi, et al. (författare)
  • Low bandgap polymers synthesized by FeCl(3) oxidative polymerization
  • 2010
  • Ingår i: Solar Energy Materials and Solar Cells. - : Elsevier BV. - 0927-0248. ; 94:7, s. 1275-1281
  • Tidskriftsartikel (refereegranskat)abstract
    • Four low bandgap polymers, combining an alkyl thiophene donor with benzo[c][1,2,5]thiadiazole, 2,3-diphenylquinoxaline, 2,3-diphenylthieno[3,4-b]pyrazine and 6,7-diphenyl-[1,2,5]thiadiazolo[3,4-g] quinoxaline acceptors in a donor-acceptor-donor architecture, were synthesized via FeCl3 oxidative polymerization. The molecular weights of the polymers were improved by introducing o-dichlor-obenzene (ODCB) as the reaction solvent instead of the commonly used solvent, chloroform. The photophysical, electrochemical and photovoltaic properties of the resulting polymers were investigated and compared. The optical bandgaps of the polymers vary between 1.0 and 1.9 eV, which is promising for solar cells. The devices spin-coated from an ODCB solution of P1DB:[70]PCBM showed a power conversion efficiency of 1.08% with an open-circuit voltage of 0.91 V and a short-circuit current density of 3.36 mA cm(-2) under irradiation from an AM1.5G solar simulator (100 mW cm(-2)). (C) 2010 Elsevier B.V. All rights reserved.
  •  
44.
  • De, Swati, et al. (författare)
  • Exciton Dynamics in Alternating Polyfluorene/Fullerene Blends
  • 2008
  • Ingår i: Journal of Chemical Physics. - College Park, MD, United States : American Institute of Physics (AIP). - 0021-9606 .- 1089-7690. ; 350:1-3, s. 14-22
  • Tidskriftsartikel (refereegranskat)abstract
    • Exciton dynamics in alternating copolymer/fullerene solar cell blends have been investigated using femtosecond transient absorption spectroscopy. The acceptor concentrations have been varied over a wide range. Experimental data, kinetic modeling and simulations, all indicate that the efficiency of exciton conversion to charges is 100% even at acceptor concentrations as low as 20 wt%. The reported dependence of solar cell efficiency on fullerene concentration may thus arise from other factors. However, there exists an acceptor concentration threshold (5 wt%) below which a substantial fraction of the excitations remain unquenched. The results, we believe are very relevant to optimization of performance efficiency by clever manipulation of morphology. We have also observed exciton–exciton energy transfer in these blends at low acceptor concentrations.
  •  
45.
  • De, Swati, et al. (författare)
  • Geminate charge recombination in alternating polyfluorene copolymer/fullerene blends
  • 2007
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 129:27, s. 8466-8472
  • Tidskriftsartikel (refereegranskat)abstract
    • By measuring excited state and charge dynamics in blends of an alternating polyfluorene copolymer and fullerene derivative over nine orders in time and two orders in light intensity, we have monitored the light-induced processes from ultrafast charge photogeneration to much slower decay of charges by recombination. We find that at low light intensities relevant to solar cell operation relatively fast (∼30 ns) geminate recombination is the dominating charge decay process, while nongeminate recombination has a negligible contribution. The conclusion of our work is that under solar illumination conditions geminate recombination of charges may be directly competing with efficient charge collection in polymer/fullerene solar cells. © 2007 American Chemical Society.
  •  
46.
  • Du, Chun, et al. (författare)
  • 9-Alkylidene-9H-Fluorene-Containing Polymer for High-Efficiency Polymer Solar Cells
  • 2011
  • Ingår i: Macromolecules. - : American Chemical Society. - 0024-9297 .- 1520-5835. ; 44:19, s. 7617-7624
  • Tidskriftsartikel (refereegranskat)abstract
    • A novel donor-acceptor copolymer containing 9-alkylidene-9H-fluorene unit in the main chain, poly[9-(1-hexylheptylidene)-2,7-fluorene-alt-5, 5-(4,7-di-2-thienyl-5,6-dialkoxy-2,1,3-benzothiadiazole)] (PAFDTBT), has been synthesized and evaluated in bulk heterojunction polymer solar cells (BHJ PSCs). The polymer possesses a low band gap of 1.84 eV, a low-lying HOMO energy level (5.32 eV), and excellent solubility in common organic solvents. PSCs based on PAFDTBT and (6,6)-phenyl-C(71)-butyric add methyl ester (PC(71)BM) demonstrate a power conversion efficiency (PCE) of 6.2% with a high fill factor (FF) of 0.70, which indicates that 9-alkylidene-9H-fluorene can be a very useful building block for constructing narrow band gap conjugated polymers for high-efficiency BHJ PSCs.
  •  
47.
  • Du, Siying, et al. (författare)
  • Nonfullerene acceptors from thieno[3,2-b]thiophene-fused naphthalene donor core with six-member-ring connection for efficient organic solar cells
  • 2021
  • Ingår i: Dyes and Pigments. - : Elsevier BV. - 0143-7208 .- 1873-3743. ; 185
  • Tidskriftsartikel (refereegranskat)abstract
    • Comprehensive design ideas on the fused-ring donor-core in state-of-the-art acceptor-donor-acceptor (A-D-A) nonfullerene acceptors (NFAs) are still of great importance for regulating the electron push-pull effect for the sake of optimal light-harvesting, frontier molecular orbital levels, and finally their photovoltaic properties. Herein, thieno[3,2-b]thiophenes were fused in bay-area of naphthalene via six-member-ring connection, resulting in the formation of dihydropyrenobisthieno[3,2-b]thiophene based octacyclic ladder-type donor core, which was flanked by two 1,1-dicyanomethylene-3-indanone (IC) acceptor motifs with and without 5,6-diflourination, namely PTT-IC and PTT-2FIC, respectively, as novel efficient A-D-A fused-ring electron acceptors (FREAs). Compared with PTT-IC, fluorinated PTT-2FIC possesses narrower optical bandgap of 1.48 eV, better π-π stacking, and its PBDB-T:PTT-2FIC blend film exhibited better morphology, and better hole and electron mobility. As a result, nonfullerene solar cells using PBDB-T:PTT-2FIC as the active layer achieved a decent PCE of 10.40%, with an open-circuit voltage (VOC) of 0.87 V, a fill factor (FF) of 0.65, and a much higher short-circuit current (JSC) of 18.26 mA/cm2. Meanwhile, the PBDB-T:PTT-IC cells delivered a lower JSC of 12.58 mA/cm2 but a higher VOC of 0.99 V, thus resulting in a PCE of 7.39% due to its wider optical bandgap of 1.58 eV and higher LUMO energy level. These results demonstrated that NFAs based on fused-ring donor core from fusing thieno[3,2-b]thiophenes with naphthalene via six-member-ring connection are promising for organic photovoltaic applications.
  •  
48.
  • Dyer, Aubrey L., et al. (författare)
  • A Vertically Integrated Solar-Powered Electrochromic Window for Energy Efficient Buildings
  • 2014
  • Ingår i: Advanced Materials. - : Wiley-VCH Verlag. - 0935-9648 .- 1521-4095. ; 26:28, s. 4895-4900
  • Tidskriftsartikel (refereegranskat)abstract
    • A solution-processed self-powered polymer electrochromic/photovoltaic (EC/PV) device is realized by vertically integrating two transparent PV cells with an ECD. The EC/PV cell is a net energy positive dual functional device, which can be reversibly switched between transparent and colored states by PV cells for regulating incoming sunlight through windows. The two PV cells can individually, or in pairs, generate electricity.
  •  
49.
  •  
50.
  • Gadisa, Abay, et al. (författare)
  • A new donor-acceptor-donor polyfluorene copolymer with balanced electron and hole mobility
  • 2007
  • Ingår i: Adv. Funct. Mater. FIELD Full Journal Title:Advanced Functional Materials. ; 17:18, s. 3836-3842
  • Tidskriftsartikel (refereegranskat)abstract
    • A new alternating polyfluorene copolymer poly[2,7-(9,9-dioctylfluoren)-alt-5,5-(5',8'-di-2-thienyl-(2',3'-bis-(3''-octyloxyphenyl)-quinoxaline))] (APFO-15), which has electron donor-acceptor-donor units in between the fluorene units, is synthesized and characterized. This polymer has a strong absorption and emission in the visible range of the solar spectrum. Its electroluminescence and photolumin escence emissions extend from about 560 to 900 nm. Moreover, solar cells with efficiencies in excess of 3.5 % have been realized from blends of APFO-15 and an electron acceptor mol., a mathanofullerene [6,6]-phenyl-C61-butyric acid Me ester (PCBM). It has also been obsd. that electron and hole transport is balanced both in the pure polymer phase and in polymer/PCBM bulk heterojunction films, which makes this material quite attractive for applications in opto-electronic devices. [on SciFinder (R)]
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 212
Typ av publikation
tidskriftsartikel (186)
konferensbidrag (14)
doktorsavhandling (8)
bokkapitel (2)
annan publikation (1)
forskningsöversikt (1)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (194)
övrigt vetenskapligt/konstnärligt (18)
Författare/redaktör
Zhang, Fengling (168)
Inganäs, Olle (78)
Andersson, Mats, 196 ... (48)
Zhang, Fengling, 196 ... (35)
Inganäs, Olle, 1951- (24)
Wang, Ergang, 1981 (24)
visa fler...
Ma, Zaifei (18)
Andersson, M.R. (15)
Mammo, Wendimagegn, ... (15)
Hou, Lintao (15)
Jin, Yingzhi (15)
Liu, Yanfeng (13)
Hellström, Stefan, 1 ... (13)
Tang, Zheng (11)
Zhou, Yi (11)
Tvingstedt, Kristofe ... (11)
Vandewal, Koen (10)
Li, Weiwei (10)
Yao, Nannan (10)
Sundström, Villy (9)
Admassie, Shimelis (9)
Andersson, Mats R (9)
Inganaes, Olle (9)
Andersson, Mattias (9)
Gao, Feng (9)
Bergqvist, Jonas (9)
Qian, Deping (9)
Gadisa, Abay (9)
Perzon, Erik Per, 19 ... (8)
Zhou, Yinhua (8)
Lu, Xinhui (8)
Yartsev, Arkady (7)
Yang, Liying (7)
Gedefaw, Desta Anten ... (7)
Zhu, Haiming (7)
Svensson, M. (6)
Wuerfel, Uli (6)
Shao, Shuyan (6)
Ma, Wei (6)
Bo, Zhishan (6)
Fahlman, Mats (5)
Mammo, W. (5)
Liu, Xianjie (5)
Liu, Feng (5)
Müller, Christian, 1 ... (5)
Moons, Ellen, profes ... (5)
Wang, Xiangjun (5)
Henriksson, Patrik, ... (5)
Li, Fenghong (5)
Lin, Yuanbao (5)
visa färre...
Lärosäte
Linköpings universitet (193)
Chalmers tekniska högskola (62)
Lunds universitet (13)
Karlstads universitet (8)
Kungliga Tekniska Högskolan (2)
Uppsala universitet (2)
visa fler...
Karolinska Institutet (2)
Göteborgs universitet (1)
Umeå universitet (1)
Stockholms universitet (1)
visa färre...
Språk
Engelska (212)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (129)
Teknik (28)
Medicin och hälsovetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy