SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhang Guangye) "

Sökning: WFRF:(Zhang Guangye)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Sun, Huiliang, et al. (författare)
  • Reducing energy loss via tuning energy levels of polymer acceptors for efficient all-polymer solar cells
  • 2020
  • Ingår i: Science China Chemistry. - : Springer Science and Business Media LLC. - 1869-1870 .- 1674-7291. ; 63:12, s. 1785-1792
  • Tidskriftsartikel (refereegranskat)abstract
    • The open-circuit voltage (Voc) of all-polymer solar cells (all-PSCs) is typically lower than 0.9 V even for the most efficient ones. Large energy loss is the main reason for limiting Voc and efficiency of all-PSCs. Herein, through materials design using electron deficient building blocks based on bithiophene imides, the lowest unoccupied molecular orbital (LUMO) energy levels of polymer acceptors can be effectively tuned, which resulted in a reduced energy loss induced by charge generation and recombination loss due to the suppressed charge-transfer (CT) state absorption. Despite a negligible driving force, all-PSC based on the polymer donor and acceptor combination with well-aligned energy levels exhibited efficient charge transfer and achieved an external quantum efficiency over 10% while maintaining a large Voc of 1.02 V, leading to a 9.21% efficiency. Through various spectroscopy approaches, this work sheds light on the mechanism of energy loss in all-PSCs, which paves an avenue to achieving efficient all-PSCs with large Voc and drives the further development of all-PSCs.
  •  
2.
  • Sun, Huiliang, et al. (författare)
  • Reducing energy lossviatuning energy levels of polymer acceptors for efficient all-polymer solar cells
  • 2020
  • Ingår i: Science China Chemistry. - : Science China Press and Springer-Verlag GmbH Germany. - 1674-7291 .- 1869-1870. ; 63, s. 1785-1792
  • Tidskriftsartikel (refereegranskat)abstract
    • The open-circuit voltage (V-oc) of all-polymer solar cells (all-PSCs) is typically lower than 0.9 V even for the most efficient ones. Large energy loss is the main reason for limitingV(oc)and efficiency of all-PSCs. Herein, through materials design using electron deficient building blocks based on bithiophene imides, the lowest unoccupied molecular orbital (LUMO) energy levels of polymer acceptors can be effectively tuned, which resulted in a reduced energy loss induced by charge generation and recombination loss due to the suppressed charge-transfer (CT) state absorption. Despite a negligible driving force, all-PSC based on the polymer donor and acceptor combination with well-aligned energy levels exhibited efficient charge transfer and achieved an external quantum efficiency over 10% while maintaining a largeV(oc)of 1.02 V, leading to a 9.21% efficiency. Through various spectroscopy approaches, this work sheds light on the mechanism of energy loss in all-PSCs, which paves an avenue to achieving efficient all-PSCs with largeV(oc)and drives the further development of all-PSCs.
  •  
3.
  • Chen, Shangshang, et al. (författare)
  • Efficient Nonfullerene Organic Solar Cells with Small Driving Forces for Both Hole and Electron Transfer
  • 2018
  • Ingår i: Advanced Materials. - : WILEY-V C H VERLAG GMBH. - 0935-9648 .- 1521-4095. ; 30:45
  • Tidskriftsartikel (refereegranskat)abstract
    • State-of-the-art organic solar cells (OSCs) typically suffer from large voltage loss (V-loss) compared to their inorganic and perovskite counterparts. There are some successful attempts to reduce the V-loss by decreasing the energy offsets between the donor and acceptor materials, and the OSC community has demonstrated efficient systems with either small highest occupied molecular orbital (HOMO) offset or negligible lowest unoccupied molecular orbital (LUMO) offset between donors and acceptors. However, efficient OSCs based on a donor/acceptor system with both small HOMO and LUMO offsets have not been demonstrated simultaneously. In this work, an efficient nonfullerene OSC is reported based on a donor polymer named PffBT2T-TT and a small-molecular acceptor (O-IDTBR), which have identical bandgaps and close energy levels. The Fourier-transform photocurrent spectroscopy external quantum efficiency (FTPS-EQE) spectrum of the blend overlaps with those of neat PffBT2T-TT and O-IDTBR, indicating the small driving forces for both hole and electron transfer. Meanwhile, the OSCs exhibit a high electroluminescence quantum efficiency (EQE(EL)) of approximate to 1 x 10(-4), which leads to a significantly minimized nonradiative V-loss of 0.24 V. Despite the small driving forces and a low V-loss, a maximum EQE of 67% and a high power conversion efficiency of 10.4% can still be achieved.
  •  
4.
  • Liu, Tao, et al. (författare)
  • 16% efficiency all-polymer organic solar cells enabled by a finely tuned morphology via the design of ternary blend
  • 2021
  • Ingår i: Joule. - : CELL PRESS. - 2542-4351. ; 5:4, s. 914-930
  • Tidskriftsartikel (refereegranskat)abstract
    • A SUMMARY There is an urgent demand for all-polymer organic solar cells (AP-OSCs) to gain higher efficiency. Here, we successfully improve the performance to 16.09% by introducing a small amount of BN-T, a B <- N-type polymer acceptor, into the PM6:PY-IT blend. It has been found that BN-T makes the active layer, based on the PM6:PY-IT:BN-T ternary blend, more crystalline but meanwhile slightly reduces the phase separation, leading to enhancement of both exciton harvesting and charge transport. From a thermodynamic viewpoint, BN-T prefers to reside between PM6 and PY-IT, and the fraction of this fine-tunes the morphology. Besides, a significantly reduced nonradiative energy loss occurs in the ternary blend, along with the coexistence of energy and charge transfer between the two acceptors. The progressive performance facilitated by these improved properties demonstrates that AP-OSCs can possibly comparably efficient with those based on small molecule acceptors, further enhancing the competitiveness of this device type.
  •  
5.
  • Sun, Huiliang, et al. (författare)
  • A monothiophene unit incorporating both fluoro and ester substitution enabling high-performance donor polymers for non-fullerene solar cells with 16.4% efficiency
  • 2019
  • Ingår i: Energy & Environmental Science. - : ROYAL SOC CHEMISTRY. - 1754-5692 .- 1754-5706. ; 12:11, s. 3328-3337
  • Tidskriftsartikel (refereegranskat)abstract
    • Thiophene and its derivatives have been extensively used in organic electronics, particularly in the field of polymer solar cells (PSCs). Significant research efforts have been dedicated to modifying thiophene-based units by attaching electron-donating or withdrawing groups to tune the energy levels of conjugated materials. Herein, we report the design and synthesis of a novel thiophene derivative, FE-T, featuring a monothiophene functionalized with both an electron-withdrawing fluorine atom (F) and an ester group (E). The FE-T unit possesses distinctive advantages of both F and E groups, the synergistic effects of which enable significant downshifting of the energy levels and enhanced aggregation/crystallinity of the resulting organic materials. Shown in this work are a series of polymers obtained by incorporating the FE-T unit into a PM6 polymer to fine-tune the energetics and morphology of this high-performance PSC material. The optimal polymer in the series shows a downshifted HOMO and an improved morphology, leading to a high PCE of 16.4% with a small energy loss (0.53 eV) enabled by the reduced non-radiative energy loss (0.23 eV), which are among the best values reported for non-fullerene PSCs to date. This work shows that the FE-T unit is a promising building block to construct donor polymers for high-performance organic photovoltaic cells.
  •  
6.
  • Ma, Ruijie, et al. (författare)
  • Adding a Third Component with Reduced Miscibility and Higher LUMO Level Enables Efficient Ternary Organic Solar Cells
  • 2020
  • Ingår i: ACS Energy Letters. - : American Chemical Society (ACS). - 2380-8195. ; 5:8, s. 2711-2720
  • Tidskriftsartikel (refereegranskat)abstract
    • It is widely known that the miscibility between donor and acceptor is a crucial factor that affects the morphology and thus device performance of nonfullerene organic solar cells (OSCs). In this Letter, we show that incorporating a third component with lower miscibility and higher lowest unoccupied molecular orbital (LUMO) level into the state-of-the-art PM6:Y6 system can significantly enhance the performance of devices. The best results of the ternary devices are achieved by adding a small molecular acceptor named ITCPTC (similar to 5% w/w), which significantly improves the power conversion efficiency (PCE) of the host system from 16.44% to 17.42%. The higher LUMO of the third component increases the open-circuit voltage (V-oc), while the low miscibility enlarges the domains and leads to improved short-circuit current density (J(sc)) and fill factor (FF). The efficacy of this strategy is supported by using other nonfullerene third components including an asymmetric small molecule (N7IT) and a polymer acceptor (PF2-DTC), which play the same role as ITCPTC and boost the PCEs to 16.96% and 17.04%, respectively. Our approach can be potentially applied to a wide range of OSC material systems and should facilitate the development of the OSC field.
  •  
7.
  • Ma, Ruijie, et al. (författare)
  • All-polymer solar cells with over 16% efficiency and enhanced stability enabled by compatible solvent and polymer additives
  • 2022
  • Ingår i: Aggregate. - : Wiley. - 2692-4560 .- 2766-8541. ; 3:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Considering the robust and stable nature of the active layers, advancing the power conversion efficiency (PCE) has long been the priority for all-polymer solar cells (all-PSCs). Despite the recent surge of PCE, the photovoltaic parameters of the state-of-the-art all-PSC still lag those of the polymer:small molecule-based devices. To compete with the counterparts, judicious modulation of the morphology and thus the device electrical properties are needed. It is difficult to improve all the parameters concurrently for the all-PSCs with advanced efficiency, and one increase is typically accompanied by the drop of the other(s). In this work, with the aids of the solvent additive (1-chloronaphthalene) and the n-type polymer additive (N2200), we can fine-tune the morphology of the active layer and demonstrate a 16.04% efficient all-PSC based on the PM6:PY-IT active layer. The grazing incidence wide-angle X-ray scattering measurements show that the shape of the crystallites can be altered, and the reshaped crystallites lead to enhanced and more balanced charge transport, reduced recombination, and suppressed energy loss, which lead to concurrently improved and device efficiency and stability.
  •  
8.
  • Qi, Zhenyu, et al. (författare)
  • Blueshifting the Absorption of a Small -Molecule Donor and Using it as the Third Component to Achieve High-Efficiency Ternary Organic Solar Cells
  • 2022
  • Ingår i: Solar RRL. - : WILEY-V C H VERLAG GMBH. - 2367-198X. ; 6:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Adding a small-molecule donor (SMD) to state-of-the-art nonfullerene organic solar cells (OSCs) is demonstrated as a useful strategy to construct ternary organic solar cells, as SMDs typically have high crystallinity and can tune charge transport properties of OSCs. However, the absorption of most SMDs overlaps with typical donor polymers (e.g., PM6), which is against the general guidelines of adopting materials with complementary absorption in ternary OSCs. Herein, the absorption of state-of-art SMDs (BTR-CI) by linking the beta position of the outer thiophene to the alpha position of the inner thiophene unit is intentionally blueshifted. The resulting molecule beta-S1 shows a maximum absorption peak at 505 nm in the film state, which exhibits wider bandgap and shows complementary absorption with the host system (PM6:Y6). The corresponding ternary OSCs with 20%wt beta-S1 show significantly enhanced efficiency from 16.2% to 17.1% due to the increased short-circuit current (J(sc)) and improved fill factor (FF). Herein, an effective strategy to design SMDs with both wider bandgaps and higher crystallinity for high-performance ternary OSCs is presented.
  •  
9.
  • Yao, Huatong, et al. (författare)
  • All-Polymer Solar Cells with over 12% Efficiency and a Small Voltage Loss Enabled by a Polymer Acceptor Based on an Extended Fused Ring Core
  • 2020
  • Ingår i: Advanced Energy Materials. - : WILEY-V C H VERLAG GMBH. - 1614-6832 .- 1614-6840. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Although the field of all-polymer solar cells (all-PSCs) has seen rapid progress in device efficiencies during the past few years, there are limited choices of polymer acceptors that exhibit strong absorption in the near-IR region and achieve high open-circuit voltage (V-OC) at the same time. In this paper, an all-PSC device is demonstrated with a 12.06% efficiency based on a new polymer acceptor (named PT-IDTTIC) that exhibits strong absorption (maximum absorption coefficient: 2.41 x 10(5)cm(-1)) and a narrow optical bandgap (1.49 eV). Compared to previously reported polymer acceptors such as those based on the indacenodithiophene (IDT) core, the indacenodithienothiophene (IDTT) core has further extended fused ring, providing the polymer with extended absorption into the near-IR region and also increases the electron mobility of the polymer. By blending PT-IDTTIC with the donor polymer, PM6, a high-efficiency all-PSC is achieved with a small voltage loss of 0.52 V, without sacrificingJ(SC)and FF, which demonstrates the great potential of high-performance all-PSCs.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy