SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhang Jibin) "

Sökning: WFRF:(Zhang Jibin)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Yang, Fei, et al. (författare)
  • Efficient and Spectrally Stable Blue Perovskite Light-Emitting Diodes Based on Potassium Passivated Nanocrystals
  • 2020
  • Ingår i: Advanced Functional Materials. - : WILEY-V C H VERLAG GMBH. - 1616-301X .- 1616-3028. ; 30:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Metal halide perovskites have aroused tremendous interest in the past several years for their promising applications in display and lighting. However, the development of blue perovskite light-emitting diodes (PeLEDs) still lags far behind that of their green and red cousins due to the difficulty in obtaining high-quality blue perovskite emissive layers. In this study, a simple approach is conceived to improve the emission and electrical properties of blue perovskites. By introducing an alkali metal ion to occupy some sites of peripheral suspended organic ligands, the nonradiative recombination is suppressed, and, consequently, blue CsPb(Br/Cl)(3) nanocrystals with a high photoluminescence quantum efficiency of 38.4% are obtained. The introduced K+ acts as a new type of metal ligand, which not only suppresses nonradiative pathways but also improves the charge carrier transport of the perovskite nanocrystals. With further engineering of the device structure to balance the charge injection rate, a spectrally stable and efficient blue PeLED with a maximum external quantum efficiency of 1.96% at the emission peak of 477 nm is fabricated.
  •  
2.
  • Zhang, Jibin, et al. (författare)
  • A Multifunctional "Halide-Equivalent" Anion Enabling Efficient CsPb(Br/I)(3) Nanocrystals Pure-Red Light-Emitting Diodes with External Quantum Efficiency Exceeding 23%
  • 2023
  • Ingår i: Advanced Materials. - : WILEY-V C H VERLAG GMBH. - 0935-9648 .- 1521-4095. ; 35:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Pure-red perovskite LEDs (PeLEDs) based on CsPb(Br/I)(3) nanocrystals (NCs) usually suffer from a compromise in emission efficiency and spectral stability on account of the surface halide vacancies-induced nonradiative recombination loss, halide phase segregation, and self-doping effect. Herein, a "halide-equivalent" anion of benzenesulfonate (BS-) is introduced into CsPb(Br/I)(3) NCs as multifunctional additive to simultaneously address the above challenging issues. Joint experiment-theory characterizations reveal that the BS- can not only passivate the uncoordinated Pb2+-related defects at the surface of NCs, but also increase the formation energy of halide vacancies. Moreover, because of the strong electron-withdrawing property of sulfonate group, electrons are expected to transfer from the CsPb(Br/I)(3) NC to BS- for reducing the self-doping effect and altering the n-type behavior of CsPb(Br/I)(3) NCs to near ambipolarity. Eventually, synergistic boost in device performance is achieved for pure-red PeLEDs with CIE coordinates of (0.70, 0.30) and a champion external quantum efficiency of 23.5%, which is one of the best value among the ever-reported red PeLEDs approaching to the Rec. 2020 red primary color. Moreover, the BS--modified PeLED exhibits negligible wavelength shift under different operating voltages. This strategy paves an efficient way for improving the efficiency and stability of pure-red PeLEDs.
  •  
3.
  • Zhang, Jibin, et al. (författare)
  • Ligand-Induced Cation-p Interactions Enable High-Efficiency, Bright, and Spectrally Stable Rec. 2020 Pure-Red Perovskite Light-Emitting Diodes
  • 2023
  • Ingår i: Advanced Materials. - : WILEY-V C H VERLAG GMBH. - 0935-9648 .- 1521-4095.
  • Tidskriftsartikel (refereegranskat)abstract
    • Achieving high-performance perovskite light-emitting diodes (PeLEDs) with pure-red electroluminescence for practical applications remains a critical challenge because of the problematic luminescence property and spectral instability of existing emitters. Herein, high-efficiency Rec. 2020 pure-red PeLEDs, simultaneously exhibiting exceptional brightness and spectral stability, based on CsPb(Br/I)(3) perovskite nanocrystals (NCs) capping with aromatic amino acid ligands featuring cation-pi interactions, are reported. It is proven that strong cation-pi interactions between the PbI6-octahedra of perovskite units and the electron-rich indole ring of tryptophan (TRP) molecules not only chemically polish the imperfect surface sites, but also markedly increase the binding affinity of the ligand molecules, leading to high photoluminescence quantum yields and greatly enhanced spectral stability of the CsPb(Br/I)(3) NCs. Moreover, the incorporation of small-size aromatic TRP ligands ensures superior charge-transport properties of the assembled emissive layers. The resultant devices emitting at around 635 nm demonstrate a champion external quantum efficiency of 22.8%, a max luminance of 12 910 cd m(-2), and outstanding spectral stability, representing one of the best-performing Rec. 2020 pure-red PeLEDs achieved so far.
  •  
4.
  • Zhang, Jibin, et al. (författare)
  • Highly Luminescent and Stable CsPbI3 Perovskite Nanocrystals with Sodium Dodecyl Sulfate Ligand Passivation for Red-Light-Emitting Diodes
  • 2021
  • Ingår i: The Journal of Physical Chemistry Letters. - : AMER CHEMICAL SOC. - 1948-7185. ; 12:9, s. 2437-2443
  • Tidskriftsartikel (refereegranskat)abstract
    • CsPbI3 perovskite nanocrystals (NCs) have recently emerged as promising materials for optoelectronic devices because of their superior properties. However, the poor stability of the CsPbI3 NCs induced by easy ligand desorption represents a key issue limiting their practical applications. Herein, we report stable and highly luminescent black-phase CsPbI3 NCs passivated by novel ligands of sodium dodecyl sulfate (SDS). Theoretical calculation results reveal a stronger adsorption energy of SDS molecules at the CsPbI3 surface than that of commonly used oleic acid. As a result, the defect formation caused by the ligand loss during the purification process is greatly suppressed. The optimized SDS- CsPbI3 NCs exhibit significantly reduced surface defects, much enhanced stability, and superior photoluminescence efficiency. The red perovskite light-emitting diodes based on the SDS-CsPbI3 NCs demonstrate an external quantum efficiency of 8.4%, which shows a 4-fold improvement compared to the devices based on the oleic acid-modified CsPbI3 NCs.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy