SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhang Mengliang) "

Sökning: WFRF:(Zhang Mengliang)

  • Resultat 1-33 av 33
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abelev, Betty, et al. (författare)
  • Long-range angular correlations on the near and away side in p-Pb collisions at root S-NN=5.02 TeV
  • 2013
  • Ingår i: Physics Letters. Section B: Nuclear, Elementary Particle and High-Energy Physics. - : Elsevier BV. - 0370-2693. ; 719:1-3, s. 29-41
  • Tidskriftsartikel (refereegranskat)abstract
    • Angular correlations between charged trigger and associated particles are measured by the ALICE detector in p-Pb collisions at a nucleon-nucleon centre-of-mass energy of 5.02 TeV for transverse momentum ranges within 0.5 < P-T,P-assoc < P-T,P-trig < 4 GeV/c. The correlations are measured over two units of pseudorapidity and full azimuthal angle in different intervals of event multiplicity, and expressed as associated yield per trigger particle. Two long-range ridge-like structures, one on the near side and one on the away side, are observed when the per-trigger yield obtained in low-multiplicity events is subtracted from the one in high-multiplicity events. The excess on the near-side is qualitatively similar to that recently reported by the CMS Collaboration, while the excess on the away-side is reported for the first time. The two-ridge structure projected onto azimuthal angle is quantified with the second and third Fourier coefficients as well as by near-side and away-side yields and widths. The yields on the near side and on the away side are equal within the uncertainties for all studied event multiplicity and p(T) bins, and the widths show no significant evolution with event multiplicity or p(T). These findings suggest that the near-side ridge is accompanied by an essentially identical away-side ridge. (c) 2013 CERN. Published by Elsevier B.V. All rights reserved.
  •  
2.
  • Abelev, Betty, et al. (författare)
  • Measurement of prompt J/psi and beauty hadron production cross sections at mid-rapidity in pp collisions at root s=7 TeV
  • 2012
  • Ingår i: Journal of High Energy Physics. - 1029-8479. ; :11
  • Tidskriftsartikel (refereegranskat)abstract
    • The ALICE experiment at the LHC has studied J/psi production at mid-rapidity in pp collisions at root s = 7 TeV through its electron pair decay on a data sample corresponding to an integrated luminosity L-int = 5.6 nb(-1). The fraction of J/psi from the decay of long-lived beauty hadrons was determined for J/psi candidates with transverse momentum p(t) > 1,3 GeV/c and rapidity vertical bar y vertical bar < 0.9. The cross section for prompt J/psi mesons, i.e. directly produced J/psi and prompt decays of heavier charmonium states such as the psi(2S) and chi(c) resonances, is sigma(prompt J/psi) (p(t) > 1.3 GeV/c, vertical bar y vertical bar < 0.9) = 8.3 +/- 0.8(stat.) +/- 1.1 (syst.)(-1.4)(+1.5) (syst. pol.) mu b. The cross section for the production of b-hadrons decaying to J/psi with p(t) > 1.3 GeV/c and vertical bar y vertical bar < 0.9 is a sigma(J/psi <- hB) (p(t) > 1.3 GeV/c, vertical bar y vertical bar < 0.9) = 1.46 +/- 0.38 (stat.)(-0.32)(+0.26) (syst.) mu b. The results are compared to QCD model predictions. The shape of the p(t) and y distributions of b-quarks predicted by perturbative QCD model calculations are used to extrapolate the measured cross section to derive the b (b) over bar pair total cross section and d sigma/dy at mid-rapidity.
  •  
3.
  • Ren, Liqun, et al. (författare)
  • Heterogenic Distribution of Aromatic L-Amino Acid Decarboxylase Neurons in the Rat Spinal Cord
  • 2017
  • Ingår i: Frontiers in Integrative Neuroscience. - : Frontiers Media SA. - 1662-5145. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Aromatic L-amino acid decarboxylase (AADC) is an essential enzyme in the synthesis of serotonin, dopamine, and certain trace amines and is present in a variety of organs including the brain and spinal cord. It is previously reported that in mammalian spinal cord AADC cells (called D-cells) were largely confined to a region around the central canal and that they do not produce monoamines. To date, there has not been a detailed description of their distribution and morphology in mammals. In the present study this issue is systematically investigated using immunohistochemistry. We have found that AADC cells in the rat spinal cord are both more numerous and more widely distributed than previously reported. In the gray matter, AADC neurons immunolabeled for NeuN were not only found in the region around the central canal but also in the dorsal horn, intermediate zone, and ventral horn. In the white matter a large number of glial cells were AADC-immunopositive in different spinal segments and the vast majority of these cells expressed oligodendrocyte and radial glial phenotypes. Additionally, a small number of AADC neurons labeled for NeuN were found in the white matter along the ventral median fissure. The shapes and sizes of AADC neurons varied according to their location. For example, throughout cervical and lumbar segments AADC neurons in the intermediate zone and ventral horn tended to be rather large and weakly immunolabeled, whereas those in comparable regions of sacrocaudal segments were smaller and more densely immunolabeled. The diverse morphological characteristics of the AADC cells suggests that they could be further divided into several subtypes. These results indicate that AADC cells are heterogeneously distributed in the rat spinal cord and they may exert different functions in different physiological and pathological situations.
  •  
4.
  • Wienecke, Jacob, et al. (författare)
  • Spinal Cord Injury Enables Aromatic l-Amino Acid Decarboxylase Cells to Synthesize Monoamines.
  • 2014
  • Ingår i: The Journal of Neuroscience. - 1529-2401. ; 34:36, s. 11984-12000
  • Tidskriftsartikel (refereegranskat)abstract
    • Serotonin (5-HT), an important modulator of both sensory and motor functions in the mammalian spinal cord, originates mainly in the raphe nuclei of the brainstem. However, following complete transection of the spinal cord, small amounts of 5-HT remain detectable below the lesion. It has been suggested, but not proven, that this residual 5-HT is produced by intraspinal 5-HT neurons. Here, we show by immunohistochemical techniques that cells containing the enzyme aromatic l-amino acid decarboxylase (AADC) occur not only near the central canal, as reported by others, but also in the intermediate zone and dorsal horn of the spinal gray matter. We show that, following complete transection of the rat spinal cord at S2 level, AADC cells distal to the lesion acquire the ability to produce 5-HT from its immediate precursor, 5-hydroxytryptophan. Our results indicate that this phenotypic change in spinal AADC cells is initiated by the loss of descending 5-HT projections due to spinal cord injury (SCI). By in vivo and in vitro electrophysiology, we show that 5-HT produced by AADC cells increases the excitability of spinal motoneurons. The phenotypic change in AADC cells appears to result from a loss of inhibition by descending 5-HT neurons and to be mediated by 5-HT1B receptors expressed by AADC cells. These findings indicate that AADC cells are a potential source of 5-HT at spinal levels below an SCI. The production of 5-HT by AADC cells, together with an upregulation of 5-HT2 receptors, offers a partial explanation of hyperreflexia below a chronic SCI.
  •  
5.
  • Abelev, Betty, et al. (författare)
  • Underlying Event measurements in pp collisions at root s=0.9 and 7 TeV with the ALICE experiment at the LHC
  • 2012
  • Ingår i: Journal of High Energy Physics. - 1029-8479. ; :7
  • Tidskriftsartikel (refereegranskat)abstract
    • We present measurements of Underlying Event observables in pp collisions at root s = 0 : 9 and 7 TeV. The analysis is performed as a function of the highest charged-particle transverse momentum p(T),L-T in the event. Different regions are defined with respect to the azimuthal direction of the leading (highest transverse momentum) track: Toward, Transverse and Away. The Toward and Away regions collect the fragmentation products of the hardest partonic interaction. The Transverse region is expected to be most sensitive to the Underlying Event activity. The study is performed with charged particles above three different p(T) thresholds: 0.15, 0.5 and 1.0 GeV/c. In the Transverse region we observe an increase in the multiplicity of a factor 2-3 between the lower and higher collision energies, depending on the track p(T) threshold considered. Data are compared to PYTHIA 6.4, PYTHIA 8.1 and PHOJET. On average, all models considered underestimate the multiplicity and summed p(T) in the Transverse region by about 10-30%.
  •  
6.
  • Azam, Bushra, et al. (författare)
  • Spinal Cord Hemisection Facilitates Aromatic L-Amino Acid Decarboxylase Cells to Produce Serotonin in the Subchronic but Not the Chronic Phase.
  • 2015
  • Ingår i: Neural Plasticity. - : Hindawi Limited. - 2090-5904 .- 1687-5443. ; 2015
  • Tidskriftsartikel (refereegranskat)abstract
    • Neuromodulators, such as serotonin (5-hydroxytryptamine, 5-HT) and noradrenalin, play an essential role in regulating the motor and sensory functions in the spinal cord. We have previously shown that in the rat spinal cord the activity of aromatic L-amino acid decarboxylase (AADC) cells to produce 5-HT from its precursor (5-hydroxytryptophan, 5-HTP) is dramatically increased following complete spinal cord transection. In this study, we investigated whether a partial loss of 5-HT innervation could similarly increase AADC activity. Adult rats with spinal cord hemisected at thoracic level (T11/T12) were used with a postoperation interval at 5 days or 60 days. Using immunohistochemistry, first, we observed a significant reduction in the density of 5-HT-immunoreactive fibers in the spinal cord below the lesion on the injured side for both groups. Second, we found that the AADC cells were similarly expressed on both injured and uninjured sides in both groups. Third, increased production of 5-HT in AADC cells following 5-HTP was seen in 5-day but not in 60-day postinjury group. These results suggest that plastic changes of the 5-HT system might happen primarily in the subchronic phase and for longer period its function could be compensated by plastic changes of other intrinsic and/or supraspinal modulation systems.
  •  
7.
  •  
8.
  •  
9.
  • Bakalkin, Georgy, et al. (författare)
  • Unilateral traumatic brain injury of the left and right hemisphere produces the left hindlimb response in rats
  • 2021
  • Ingår i: Experimental Brain Research. - : Springer Science and Business Media LLC. - 0014-4819 .- 1432-1106. ; 239:7, s. 2221-2232
  • Tidskriftsartikel (refereegranskat)abstract
    • Traumatic brain injury and stroke result in hemiplegia, hemiparesis, and asymmetry in posture. The effects are mostly contralateral; however, ipsilesional deficits may also develop. We here examined whether ablation brain injury and controlled cortical impact (CCI), a rat model of clinical focal traumatic brain injury, both centered over the left or right sensorimotor cortex, induced hindlimb postural asymmetry (HL-PA) with contralesional or ipsilesional limb flexion. The contralesional hindlimb was flexed after left or right side ablation injury. In contrast, both the left and right CCI unexpectedly produced HL-PA with flexion on left side. The flexion persisted after complete spinal cord transection suggesting that CCI triggered neuroplastic processes in lumbar neural circuits enabling asymmetric muscle contraction. Left limb flexion was exhibited under pentobarbital anesthesia. However, under ketamine anesthesia, the body of the left and right CCI rats bent laterally in the coronal plane to the ipsilesional side suggesting that the left and right injury engaged mirror-symmetrical motor pathways. Thus, the effects of the left and right CCI on HL-PA were not mirror-symmetrical in contrast to those of the ablation brain injury, and to the left and right CCI produced body bending. Ipsilateral effects of the left CCI on HL-PA may be mediated by a lateralized motor pathway that is not affected by the left ablation injury. Alternatively, the left-side-specific neurohormonal mechanism that signals from injured brain to spinal cord may be activated by both the left and right CCI but not by ablation injury.
  •  
10.
  • Carvalho, Liliana S., et al. (författare)
  • Unilateral brain injury to pregnant rats induces asymmetric neurological deficits in the offspring
  • 2021
  • Ingår i: European Journal of Neuroscience. - : John Wiley & Sons. - 0953-816X .- 1460-9568. ; 53:11, s. 3621-3633
  • Tidskriftsartikel (refereegranskat)abstract
    • Effects of environmental factors may be transmitted to the following generation, and cause neuropsychiatric disorders including depression, anxiety, and posttraumatic stress disorder in the offspring. Enhanced synaptic plasticity induced by environmental enrichment may be also transmitted. We here test the hypothesis that the effects of brain injury in pregnant animals may produce neurological deficits in the offspring. Unilateral brain injury (UBI) by ablation of the hindlimb sensorimotor cortex in pregnant rats resulted in the development of hindlimb postural asymmetry (HL-PA), and impairment of balance and coordination in beam walking test in the offspring. The offspring of rats with the left UBI exhibited HL-PA before and after spinal cord transection with the contralesional (i.e., right) hindlimb flexion. The right UBI caused the offspring to develop HL-PA that however was cryptic and not-lateralized; it was evident only after spinalization, and was characterized by similar occurrence of the ipsi- and contralesional hindlimb flexion. The HL-PA persisted after spinalization suggesting that the asymmetry was encoded in lumbar spinal neurocircuits that control hindlimb muscles. Balance and coordination were affected by the right UBI but not the left UBI. Thus, the effects of a unilateral brain lesion in pregnant animals may be intergenerationally transmitted, and this process may depend on the side of brain injury. The results suggest the existence of left-right side-specific mechanisms that mediate transmission of the lateralized effects of brain trauma from mother to fetus.
  •  
11.
  • Hjæresen, Simone, et al. (författare)
  • High temperature requirement A1 and macrophage migration inhibitory factor in the cerebrospinal fluid; a potential marker of conversion from relapsing-remitting to secondary progressive multiple sclerosis
  • 2024
  • Ingår i: Journal of the Neurological Sciences. - 0022-510X .- 1878-5883. ; 457
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Predictive and prognostic biomarkers for multiple sclerosis (MS) remain a significant gap in MS diagnosis and treatment monitoring. Currently, there are no timely markers to diagnose the transition to secondary progressive MS (SPMS). Objective: This study aims to evaluate the discriminatory potential of the High temperature requirement serine protease (HTRA1)/Macrophage migration inhibitory factor (MIF) cerebrospinal fluid (CSF) ratio in distinguishing relapsing-remitting (RRMS) patients from SPMS patients. Methods: The MIF and HTRA1 CSF levels were determined using ELISA in healthy controls (n = 23), RRMS patients before (n = 22) and after 1 year of dimethyl fumarate treatment (n = 11), as well as in SPMS patients before (n = 11) and after 2 years of mitoxantrone treatment (n = 7). The ability of the HTRA1/MIF ratio to discriminate the different groups was determined using receiver operating curve (ROC) analyses. Results: The ratio was significantly increased in treatment naïve RRMS patients while decreased again in SPMS patients at baseline. Systemic administrated disease modifying treatment (DMT) only significantly affected the ratio in RRMS patients. ROC analysis demonstrated that the ratio could discriminate treatment naïve RRMS patients from SPMS patients with 91% sensitivity and 100% specificity. Conclusion: The HTRA1/MIF ratio is a strong candidate as a MS biomarker for SPMS conversion.
  •  
12.
  • Levinsson, Anders, et al. (författare)
  • Spinal sensorimotor transformation: Relation between cutaneous somatotopy and a reflex network
  • 2002
  • Ingår i: The Journal of Neuroscience. - 1529-2401. ; 22:18, s. 8170-8182
  • Tidskriftsartikel (refereegranskat)abstract
    • The projection of primary afferents onto spinal interneurons constitutes the first step in sensorimotor transformations performed by spinal reflex systems. Despite extensive studies on spinal somatotopy, uncertainties remain concerning the extent and significance of representational overlap and relation to spinal reflex circuits. To address these issues, the cutaneous projection from the hindpaw and its relation to the topography of lamina V neurons encoding withdrawal reflex strength ("reflex encoders") was studied in rats. Thin and coarse primary afferent terminations in laminas II and III-IV, respectively, were mapped by wheat germ agglutinin-horseradish peroxidase and choleragenoid tracing. The functional weights of these projections were characterized by mapping nociceptive and tactile field potentials and compared with the topography of reflex encoders. Both anatomical and physiological data indicate that thin and coarse skin afferent input is spatially congruent in the horizontal plane. The representation of the hindpaw in the spinal cord was found to be intricate, with a high degree of convergence between the projections from different skin sites. "Somatotopic disruptions" such as the representation of central pads medial to that of the digits were common. The weight distribution of the cutaneous convergence patterns in laminas III-IV was similar to that of lamina V reflex encoders. This suggests that the cutaneous convergence and features such as somatotopic disruptions have specific relations to the sensorimotor transformations performed by reflex interneurons in the deep dorsal horn. Hence, the spinal somatotopic map may be better understood in light of the topography of such reflex systems.
  •  
13.
  • Lindqvist, Niclas, et al. (författare)
  • Aromatic L-amino acid decarboxylase in rhesus monkey spinal cord
  • 2015
  • Konferensbidrag (refereegranskat)abstract
    • Spasticity is a locomotory disability that is common after injury to the spinal cord. Monoamines such as serotonin and dopamine controls the activation of motoneurons, which in turn affects muscle. Aromatic L-amino acid decarboxylase (AADC) catalyzes formation of serotonin from 5-hydroxytryptophan and dopamine from L-dihydroxyphenylalanine. To study if there are cells in the primate spinal cord that express AADC and thereby may produce monoamines, we performed immunohistochemistry with diaminobenzidine staining on normal spinal cord from Rhesus monkey (Macaca mulatta). Transversal sections revealed AADC-immunoreactive (IR) cells close to the central canal (CC) with processes passing the ependymal layer into the CC where they terminated with a bulbous ending. These AADC-IR cells were mainly found on the ventral side of CC with strongly stained cell bodies and processes whereas occasional bulbous endings immunostained for AADC were found on the dorsal side of CC. These AADC-IR cells were clearly cerebrospinal-fluid contacting and classified as belonging to the D1 category of AADC-cells. They were found in cervical, thoracic, lumbar and sacral spinal cord segments. In addition, AADC-IR cells with clearly labeled processes were found around and ventral of CC towards the ventral median fissure. These cells were sometimes situated close to blood vessels. Thus, AADC-IR cells were mainly found in gray matter and in gray matter bordering the white matter. Vascular walls were not clearly immunostained for AADC. Strong AADC-IR was seen in fibers, particularly in the dorsal horns and these were potentially descending monoamine fibers from the brain. In comparison with rat spinal cord (1) the AADC-IR cells in monkey spinal cord were overall less abundant. In conclusion, we have identified AADC-IR cells in monkey spinal cord and further studies will reveal if they may contribute to monoamine synthesis and control of motoneuron excitability after spinal cord injury. (1) Wienecke et al, J Neurosci, 34:36, 2014
  •  
14.
  • Liu, Y, et al. (författare)
  • Brainstem and thalamic projections from a craniovascular sensory nervous centre in the rostral cervical spinal dorsal horn of rats.
  • 2009
  • Ingår i: Cephalalgia. - : SAGE Publications. - 0333-1024 .- 1468-2982. ; 29, s. 935-948
  • Tidskriftsartikel (refereegranskat)abstract
    • To examine the ascending projections from the headache-related trigeminocervical complex in rats, biotinylated dextran amine (BDA) was injected into the ventrolateral dorsal horn of segments C1 and C2, a region previously demonstrated to receive input from sensory nerves in cranial blood vessels. Following injections into laminae I-II, BDA-labelled terminations were found bilaterally in several nuclei in the pons and the midbrain, including the pontine reticular nucleus, the parabrachial nuclei, the cuneiform nucleus and the periaqueductal grey. In the diencephalon, terminations were confined to the contralateral side and evident foremost in the posterior nuclear group, especially its triangular part, and in the ventral posteromedial nucleus. Following injections extending through laminae I-IV, anterograde labelling was more extensive. Some of the above regions are likely to be involved in the central processing of noxious signals of craniovascular origin and therefore putatively involved in mechanisms associated with primary headaches.
  •  
15.
  •  
16.
  •  
17.
  • Lukoyanov, Nikolay, et al. (författare)
  • Endocrine signaling mediates asymmetric motor deficits after unilateral brain injury
  • 2020
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • A paradigm in neurology is that brain injury-induced motor deficits (e.g. hemiparesis and hemiplegia) arise due to aberrant activity of descending neural pathways. We discovered that a unilateral injury of the hindlimb sensorimotor cortex of rats with completely transected thoracic spinal cord produces hindlimb postural asymmetry with contralateral flexion, and asymmetric changes in nociceptive hindlimb withdrawal reflexes and gene expression patterns in lumbar spinal cord. The injury-induced postural effects were abolished by prior hypophysectomy and were mimicked by transfusion of serum from animals with unilateral brain injury. Antagonists of the opioid and vasopressin receptors blocked formation of hindlimb postural asymmetry suggesting that these neurohormones mediate effects of brain injury on lateralized motor responses. Our data indicate that descending neural control of spinal circuits is complemented by a previously unknown humoral signaling from injured brain to the contra- and ipsilesional hindlimbs, and suggest the existence of a body side-specific neuroendocrine regulation in bilaterally symmetric animals.
  •  
18.
  •  
19.
  • Lukoyanov, Nikolay, et al. (författare)
  • Left-right side-specific endocrine signaling complements neural pathways to mediate acute asymmetric effects of brain injury
  • 2021
  • Ingår i: eLIFE. - : eLife Sciences Publications Ltd. - 2050-084X. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Brain injuries can interrupt descending neural pathways that convey motor commands from the cortex to spinal motoneurons. Here, we demonstrate that a unilateral injury of the hindlimb sensorimotor cortex of rats with completely transected thoracic spinal cord produces hindlimb postural asymmetry with contralateral flexion and asymmetric hindlimb withdrawal reflexes within 3 hr, as well as asymmetry in gene expression patterns in the lumbar spinal cord. The injury-induced postural effects were abolished by hypophysectomy and were mimicked by transfusion of serum from animals with brain injury. Administration of the pituitary neurohormones beta-endorphin or Arg-vasopressin-induced side-specific hindlimb responses in naive animals, while antagonists of the opioid and vasopressin receptors blocked hindlimb postural asymmetry in rats with brain injury. Thus, in addition to the well-established involvement of motor pathways descending from the brain to spinal circuits, the side-specific humoral signaling may also add to postural and reflex asymmetries seen after brain injury.
  •  
20.
  • Lukoyanov, Nikolay, et al. (författare)
  • Left-right side-specific endocrine signaling complements neural pathways to mediate acute asymmetric effects of brain injury
  • 2021
  • Ingår i: eLife. - 2050-084X. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Brain injuries can interrupt descending neural pathways that convey motor commands from the cortex to spinal motoneurons. Here, we demonstrate that a unilateral injury of the hindlimb sensorimotor cortex of rats with completely transected thoracic spinal cord produces hindlimb postural asymmetry with contralateral flexion and asymmetric hindlimb withdrawal reflexes within 3 hr, as well as asymmetry in gene expression patterns in the lumbar spinal cord. The injury-induced postural effects were abolished by hypophysectomy and were mimicked by transfusion of serum from animals with brain injury. Administration of the pituitary neurohormones b-endorphin or Arg-vasopressin-induced side-specific hindlimb responses in naive animals, while antagonists of the opioid and vasopressin receptors blocked hindlimb postural asymmetry in rats with brain injury. Thus, in addition to the well-established involvement of motor pathways descending from the brain to spinal circuits, the side-specific humoral signaling may also add to postural and reflex asymmetries seen after brain injury.
  •  
21.
  • Mouton, LJ, et al. (författare)
  • Lateral cervical nucleus projections to periaqueductal gray matter in cat
  • 2004
  • Ingår i: Journal of Comparative Neurology. - : Wiley. - 1096-9861 .- 0021-9967. ; 471:4, s. 434-445
  • Tidskriftsartikel (refereegranskat)abstract
    • The midbrain periaqueductal gray matter (PAG) integrates the basic responses necessary for survival of individuals and species. Examples are defense behaviors such as fight, flight, and freezing, but also sexual behavior, vocalization, and micturition. To control these behaviors the PAG depends on strong input from more rostrally located limbic structures, as well as from afferent input from the lower brainstem and spinal cord. Mouton and Holstege (2000, J Comp Neurol 428:389-410) showed that there exist at least five different groups of spino-PAG neurons, each of which is thought to subserve a specific function. The lateral cervical nucleus (LCN) in the upper cervical cord is not among these five groups. The LCN relays information from hair receptors and noxious information and projects strongly to the contralateral ventroposterior and posterior regions of thalamus and to intermediate and deep tectal layers. The question is whether the LCN also projects to the PAG. The present study in cat, using retrograde and anterograde tracing techniques, showed that neurons located in the lateral two-thirds of the LCN send fibers to the lateral part of the PAG, predominantly at rostrocaudal levels A0.6-P0.2. This part of the PAG is known to be involved in flight behavior. A concept is put forward according to which the LCN-PAG pathway alerts the animal about the presence of cutaneous stimuli that might represent danger, necessitating flight. (C) 2004 Wiley-Liss, Inc.
  •  
22.
  • Ren, Li Qun, et al. (författare)
  • Production of dopamine by aromatic l-amino acid decarboxylase cells after spinal cord injury
  • 2016
  • Ingår i: Journal of Neurotrauma. - : Mary Ann Liebert Inc. - 0897-7151 .- 1557-9042. ; 33:12, s. 1150-1160
  • Tidskriftsartikel (refereegranskat)abstract
    • Aromatic l-amino acid decarboxylase (AADC) cells are widely distributed in the spinal cord, and their functions are largely unknown. We have previously found that AADC cells in the spinal cord could increase their ability to produce serotonin (5-hydroxytryptamine) from 5-hydroxytryptophan after spinal cord injury (SCI). Because AADC is a common enzyme catalyzing 5-hydroxytryptophan to serotonin and l-3,4-dihydroxyphenylalanine (l-dopa) to dopamine (DA), it seems likely that the ability of AADC cells using l-dopa to synthesize DA is also increased. To prove whether or not this is the case, a similar rat sacral SCI model and a similar experimental paradigm were adopted as that which we had used previously. In the chronic SCI rats (> 45 days), no AADC cells expressed DA if there was no exogenous l-dopa application. However, following administration of a peripheral AADC inhibitor (carbidopa) with or without a monoamine oxidase inhibitor (pargyline) co-application, systemic administration of l-dopa resulted in ∼94% of AADC cells becoming DA-immunopositive in the spinal cord below the lesion, whereas in normal or sham-operated rats none or very few of AADC cells became DA-immunopositive with the same treatment. Using tail electromyography, spontaneous tail muscle activity was increased nearly fivefold over the baseline level. When pretreated with a central AADC inhibitor (NSD-1015), further application of l-dopa failed to increase the motoneuron activity although the expression of DA in the AADC cells was not completely inhibited. These findings demonstrate that AADC cells in the spinal cord below the lesion gain the ability to produce DA from its precursor in response to SCI. This ability also enables the AADC cells to produce 5-HT and trace amines, and likely contributes to the development of hyperexcitability. These results might also be implicated for revealing the pathological mechanisms underlying l-dopa-induced dyskinesia in Parkinson's disease.
  •  
23.
  •  
24.
  • Watanabe, Hiroyuki, et al. (författare)
  • Ipsilesional versus contralesional postural deficits induced by unilateral brain trauma : a side reversal by opioid mechanism
  • 2020
  • Ingår i: Brain Communications. - : Oxford University Press. - 2632-1297. ; 2:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Unilateral traumatic brain injury and stroke result in asymmetric postural and motor deficits including contralateral hemiplegia and hemiparesis. In animals, a localized unilateral brain injury recapitulates the human upper motor neuron syndrome in formation of hindlimb postural asymmetry with contralesional limb flexion and the asymmetry of hindlimb nociceptive withdrawal reflexes. The current view is that these effects are developed due to aberrant activity of motor pathways that descend from the brain into the spinal cord. These pathways and their target spinal circuits may be regulated by local neurohormonal systems that may also mediate effects of brain injury. Here we evaluate if a unilateral traumatic brain injury induces hindlimb postural asymmetry, a model of postural deficits, and if this asymmetry is spinally encoded and mediated by the endogenous opioid system in rats. A unilateral right-sided controlled cortical impact, a model of clinical focal traumatic brain injury was centered over the sensorimotor cortex and was observed to induce hindlimb postural asymmetry with contralateral limb flexion. The asymmetry persisted after complete spinal cord transection, implicating local neurocircuitry in the development of the deficits. Administration of the general opioid antagonist naloxone and µ-antagonist β-funaltrexamine blocked formation of postural asymmetry. Surprisingly, κ-antagonists nor-binaltorphimine and LY2444296 did not affect the asymmetry magnitude but reversed the flexion side; instead of contralesional (left) hindlimb flexion the ipsilesional (right) limb was flexed. The postural effects of the right-side cortical injury were mimicked in animals with intact brain via intrathecal administration of the opioid κ-agonist U50,488 that induced hindlimb postural asymmetry with left limb flexion. The δ-antagonist naltrindole produced no effect on the contralesional (left) flexion but inhibited formation of the ipsilesional (right) limb flexion in brain-injured rats that were treated with κ-antagonist. The effects of the antagonists were evident before and after spinal cord transection. We concluded that the focal traumatic brain injury-induced postural asymmetry was encoded at the spinal level, and was blocked or its side was reversed by administration of opioid antagonists. The findings suggest that the balance in activity of the mirror symmetric spinal neural circuits regulating contraction of the left and right hindlimb muscles is controlled by receptors; and that this equilibrium is impaired after unilateral brain trauma through side-specific opioid mechanism.
  •  
25.
  • Watanabe, Hiroyuki, et al. (författare)
  • Left-right side-specific neuropeptide mechanism mediates contralateral responses to a unilateral brain injury
  • 2021
  • Ingår i: eNeuro. - : Society for Neuroscience. - 2373-2822. ; 8:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Neuropeptides are implicated in control of lateralized processes in the brain. A unilateral brain injury (UBI) causes the contra- and ipsilesional side-specific postural and sensorimotor deficits. To examine whether opioid neuropeptides mediate UBI induced asymmetric processes we compared effects of opioid antagonists on the contra- and ipsilesional hindlimb responses to the left- and right-sided injury in rats. UBI induced hindlimb postural asymmetry (HL-PA) with the contralesional hindlimb flexion, and activated contralesional withdrawal reflex of extensor digitorum longus (EDL) evoked by electrical stimulation and recorded with EMG technique. No effects on the interossei (Int) and peroneaus longus (PL) were evident. The general opioid antagonist naloxone blocked postural effects, did not change EDL asymmetry while uncovered cryptic asymmetry in the PL and Int reflexes induced by UBI. Thus the spinal opioid system may either mediate or counteract the injury effects. Strikingly, effects of selective opioid antagonists were the injury side-specific. The mu- and kappa-antagonists beta-funaltrexamine and nor-binaltorphimine, respectively, reduced postural asymmetry after the right but not left UBI. In contrast, the delta-antagonist naltrindole inhibited HL-PA after the left but not right side brain injury. The opioid gene expression and opioid peptides were lateralized in the lumbar spinal cord, and coordination between expression of the opioid and neuroplasticity-related genes was impaired by UBI that together may underlie the side-specific effects of the antagonists. We suggest that mirror-symmetric neural circuits that mediate effects of left and right brain injury on the contralesional hindlimbs are differentially controlled by the lateralized opioid system. Significance statement Functional specialization of the left and right hemispheres is an organizing principle of the brain. Lasting regulation of lateralized processes may be accomplished by paracrine neurohormonal mechanisms that preferentially operate in the left or right hemisphere. Our findings support this hypothesis by demonstration that mirror-symmetric neural circuits that control the left and right hindlimbs may be regulated by the left- and right-side specific neuropeptide mechanisms. Neuropeptides may differentially target the left and right counterparts of these circuits, and in this way control the left-right balance in their functional performance. This bipartite mechanism may be based on lateralization of the neuropeptide systems, and may operate in the spinal cord or control neural pathways descending from the brain to contralateral motoneurons.
  •  
26.
  •  
27.
  •  
28.
  • Zhang, Mengliang (författare)
  • Cervicothalamic tract termination and its cortical connections: anatomical studies in cats and ferrets
  • 2001
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The termination and cortical connections of the cervicothalamic tract (CTT) were studied by neuroanatomical tract tracing techniques in cats and ferrets. After injections of wheat germ agglutinin-horseradish peroxidase conjugate or biotinylated dextran amine (BDA) into the cat lateral cervical nucleus (LCN), the most abundant CTT termination is present in the ventral posterior lateral nucleus (VPL). The CTT terminates in the peripheral rim of the VPL and in between its lateral and medial subdivisions, regions defined in cats by sparse Cat-301 immunolabeling. Scattered CTT terminations are also seen in the vental periphery of the ventrobasal complex [VBvp; ventral posterior inferior nucleus (VPI) in ferrets] and in the medial nucleus of the posterior complex (POm). Dense and focused CTT termination is also present in the medial extension of the magnocellular nucleus of the medial geniculate nucleus (MGmc). Most of the CTT terminals in VPL are clustered. In contrast, in the VBvp and the POm widely spaced terminals dominate. In the MGmc, clustered terminals are found in close relation to Cat-301-positive neurons. Although the LCN is smaller in ferrets, its organization and termination in the thalamus are closely samilar to those in cats. Following BDA injections into the LCN and choleragenoid injections into the first somatosensory cortex (SI) or a region including the second somatosensory cortex (SIIr) in ferrets, numerous juxtapositions are evident between CTT terminals and proximal parts of labeled VPL neurons. In the POm, both proximal and distal juxtapositions were evident, whereas in the VPI only distal juxtapositions are detected. Quantitative analysis demonstrated that a higher percentage of SIIr- than SI-projecting VPL neurons was overlapped by CTT terminals. These findings suggest that the spinocervicothalamic pathway foremost is involved in functions assigned to the second somatosensory cortex, e.g., tactile learning and sensorimotor integration.
  •  
29.
  • Zhang, Mengliang, et al. (författare)
  • Expression of calcium channel Ca(v)1.3 in cat spinal cord: Light and electron microscopic immunohistochemical study
  • 2008
  • Ingår i: Journal of Comparative Neurology. - : Wiley. - 1096-9861 .- 0021-9967. ; 507:1, s. 1109-1127
  • Tidskriftsartikel (refereegranskat)abstract
    • In spinal neurons, plateau potentials serve to amplify neuronal input signals. To a large extent, the underlying persistent inward current is mediated by a subtype of the L-type calcium channel (Ca(v)1.3). In the present investigation, we have studied its distribution and cellular localization in the cat spinal cord by light and electron microscopic immunohistochemistry. The results show that Ca(v)1.3-like immunoreactivity is widely distributed in all segments of the spinal cord but that the distribution in the different laminae of the spinal gray matter varies, with the highest density of labeled neurons in lamina IX and the lowest in lamina II. The labeling intensity was highest in neuronal somata, but a certain length of the proximal dendrite was also labeled. Some neuronal groups exhibited a particularly dense labeling; these include the lateral motoneuronal group in the cervical and the lumbar enlargements and the phrenic nucleus in cervical, Clarke's nucleus in lower thoracic and upper lumbar, and Onuf's nucleus in upper sacral segments. At the ultrastructural level, Ca(v)1.3-immunoreactive products were found in neuronal somata and dendrites of different sizes. In the soma, they were predominantly associated with the rough endoplasmic reticulum but some also with the plasma membrane. In dendrites, they were associated with both intracellular organelles, including microtubules and microchondria, and the plasma membrane. These results indicate that significant proportions of the neurons in cat spinal cord, including projection neurons, interneurons, and motoneurons, are endowed with ion channels that subserve persistent inward currents and act to amplify synaptic input signals.
  •  
30.
  • Zhang, Mengliang, et al. (författare)
  • Hindlimb motor responses to unilateral brain injury : spinal cord encoding and left-right asymmetry
  • 2020
  • Ingår i: Brain Communications. - : Oxford University Press (OUP). - 2632-1297. ; 2:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Mechanisms of motor deficits (e.g. hemiparesis and hemiplegia) secondary to stroke and traumatic brain injury remain poorly understood. In early animal studies, a unilateral lesion to the cerebellum produced postural asymmetry with ipsilateral hindlimb flexion that was retained after complete spinal cord transection. Here we demonstrate that hindlimb postural asymmetry in rats is induced by a unilateral injury of the hindlimb sensorimotor cortex, and characterize this phenomenon as a model of spinal neuroplasticity underlying asymmetric motor deficits. After cortical lesion, the asymmetry was developed due to the contralesional hindlimb flexion and persisted after decerebration and complete spinal cord transection. The asymmetry induced by the left-side brain injury was eliminated by bilateral lumbar dorsal rhizotomy, but surprisingly, the asymmetry after the right-side brain lesion was resistant to deafferentation. Pancuronium, a curare-mimetic muscle relaxant, abolished the asymmetry after the right-side lesion suggesting its dependence on the efferent drive. The contra- and ipsilesional hindlimbs displayed different musculo-articular resistance to stretch after the left but not right-side injury. The nociceptive withdrawal reflexes evoked by electrical stimulation and recorded with EMG technique were different between the left and right hindlimbs in the spinalized decerebrate rats. On this asymmetric background, a brain injury resulted in greater reflex activation on the contra- versus ipsilesional side; the difference between the limbs was higher after the right-side brain lesion. The unilateral brain injury modified expression of neuroplasticity genes analysed as readout of plastic changes, as well as robustly impaired coordination of their expression within and between the ipsi- and contralesional halves of lumbar spinal cord; the effects were more pronounced after the left side compared to the right-side injury. Our data suggest that changes in the hindlimb posture, resistance to stretch and nociceptive withdrawal reflexes are encoded by neuroplastic processes in lumbar spinal circuits induced by a unilateral brain injury. Two mechanisms, one dependent on and one independent of afferent input may mediate asymmetric hindlimb motor responses. The latter, deafferentation resistant mechanism may be based on sustained muscle contractions which often occur in patients with central lesions and which are not evoked by afferent stimulation. The unusual feature of these mechanisms is their lateralization in the spinal cord.
  •  
31.
  • Zhang, Mengliang, et al. (författare)
  • Normal Distribution and Plasticity of Serotonin Receptors after Spinal Cord Injury and Their Impacts on Motor Outputs
  • 2016
  • Ingår i: Recovery of Motor Function Following Spinal Cord Injury. - : InTech. - 9789535124979 - 9789535124986 ; , s. 95-95
  • Bokkapitel (refereegranskat)abstract
    • Following spinal cord injury (SCI) a series of anatomical and functional plastic changes occur in the spinal cord, including reorganization of the spinal neuronal network, alteration of properties of interneurons and motoneurons as well as up- or down-regulation of different neurotransmitter receptors. In mammalian spinal cord, one of the important neurotransmitters, serotonin (5-HT), plays an essential role in modulating sensory, motor and autonomic functions. Following SCI, especially complete spinal cord lesion, the descending supply of 5-HT is lost. As a consequence different 5-HT receptors undergo variant degrees of plastic changes.In this chapter I have systematically reviewed the distribution of different 5-HT receptors in the spinal cord and their plastic changes following SCI where applicable. In addition, the plastic changes of 5-HT supplying system in reaction to SCI have also been reviewed. These results indicate that 5-HT receptors are important factors not only for modulation of normal motor function, their plastic changes are also critical for motor functional recovery and, quite often, for the development of certain pathological states after SCI. Pharmacological and/or genetic intervention of selected 5-HT receptors and/or intrinsic 5-HT producing system in the spinal cord may pave new ways for the restoration of motor functions after SCI.
  •  
32.
  • Zhang, Mengliang, et al. (författare)
  • Organization of the ferret lateral cervical nucleus and cervicothalamic tract.
  • 2002
  • Ingår i: Somatosensory & Motor Research. - : Informa UK Limited. - 0899-0220 .- 1369-1651. ; 19:1, s. 36-48
  • Tidskriftsartikel (refereegranskat)abstract
    • To elucidate the organization of the ferret spinocervicothalamic pathway (SCTP), we examined the lateral cervical nucleus (LCN) and the termination of the cervicothalamic tract (CTY) in this species. In thionin-stained sections, the ferret LCN appeared as an easily delineated column of cells in the dorsolateral funiculus from about mid-C3 to the rostral end of C1, with most cells located in the C1 and C2 segments. In transverse sections, the LCN was elongated along a dorsolateral to ventromedial axis and in the rostral half of C2 and caudal half of C1 continuous with the neck of the dorsal horn. The number of ferret LCN cells was estimated to 2,500-3,700, with an average of 3,340. Substance P-like immunoreactive fibers located preferentially in the ventromedial part of the LCN, whereas serotonin-like immunoreactive fibers were found throughout the nucleus. Anterograde transport of wheat germ agglutinin-horseradish peroxidase conjugate and biotinylated dextran amine demonstrated that the ferret CTT terminates extensively in the peripheral parts of the ventral posterior lateral nucleus. Sparser termination was evident in the ventral posterior inferior nucleus, in the medial nucleus of the posterior complex, and in the medial part of the magnocellular medial geniculate nucleus. Thus, although the LCN is significantly smaller in ferrets than in cats and raccoons, the organization of the LCN and of the cervicothalamic tract is closely similar in the three species. These findings indicate a conserved general organization of the SCTP among carnivores.
  •  
33.
  • Zhang, Mengliang (författare)
  • Two-step production of monoamines in monoenzymatic cells in the spinal cord : A different control strategy of neurotransmitter supply?
  • 2016
  • Ingår i: Neural Regeneration Research. - : Medknow. - 1673-5374. ; 11:12, s. 1904-1909
  • Forskningsöversikt (refereegranskat)abstract
    • Monoamine neurotransmitters play an important role in the modulation of sensory, motor and autonomic functions in the spinal cord. Although traditionally it is believed that in mammalian spinal cord, monoamine neurotransmitters mainly originate from the brain, accumulating evidence indicates that especially when the spinal cord is injured, they can also be produced in the spinal cord. In this review, I will present evidence for a possible pathway for two-step synthesis of dopamine and serotonin in the spinal cord. Published data from different sources and unpublished data from my own ongoing projects indicate that monoenzymatic cells expressing aromatic L-amino acid decarboxylase (AADC), tyrosine hydroxylase (TH) or tryptophan hydroxylase (TPH) are present in the spinal cord and that these TH and THP cells often lie in close proximity to AADC cells. Prompted by the above evidence, I hypothesize that dopamine and serotonin could be synthesized sequentially in two monoenzymatic cells in the spinal cord via a TH-AADC and a TPH-AADC cascade respectively. The monoamines synthesized through this pathway may compensate for lost neurotransmitters following spinal cord injury and also may play specific roles in the recovery of sensory, motor and autonomic functions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-33 av 33
Typ av publikation
tidskriftsartikel (26)
konferensbidrag (3)
annan publikation (1)
doktorsavhandling (1)
forskningsöversikt (1)
bokkapitel (1)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (27)
övrigt vetenskapligt/konstnärligt (6)
Författare/redaktör
Stenlund, Evert (3)
Blanco, F. (3)
Christiansen, Peter (3)
Dobrin, Alexandru (3)
Majumdar, A. K. Dutt ... (3)
Gros, Philippe (3)
visa fler...
Kurepin, A. (3)
Kurepin, A. B. (3)
Malinina, Ludmila (3)
Milosevic, Jovan (3)
Ortiz Velasquez, Ant ... (3)
Sogaard, Carsten (3)
Kowalski, Marek (3)
Peskov, Vladimir (3)
Abelev, Betty (3)
Adamova, Dagmar (3)
Adare, Andrew Marsha ... (3)
Aggarwal, Madan (3)
Rinella, Gianluca Ag ... (3)
Agostinelli, Andrea (3)
Ahammed, Zubayer (3)
Ahmad, Nazeer (3)
Ahmad, Arshad (3)
Ahn, Sang Un (3)
Akindinov, Alexander (3)
Aleksandrov, Dmitry (3)
Alessandro, Bruno (3)
Alici, Andrea (3)
Alkin, Anton (3)
Almaraz Avina, Erick ... (3)
Alt, Torsten (3)
Altini, Valerio (3)
Altinpinar, Sedat (3)
Altsybeev, Igor (3)
Andrei, Cristian (3)
Andronic, Anton (3)
Anguelov, Venelin (3)
Anson, Christopher D ... (3)
Anticic, Tome (3)
Antinori, Federico (3)
Antonioli, Pietro (3)
Aphecetche, Laurent ... (3)
Appelshauser, Harald (3)
Arbor, Nicolas (3)
Arcelli, Silvia (3)
Arend, Andreas (3)
Armesto, Nestor (3)
Arnaldi, Roberta (3)
Aronsson, Tomas Robe ... (3)
Arsene, Ionut Cristi ... (3)
visa färre...
Lärosäte
Lunds universitet (26)
Uppsala universitet (11)
Karolinska Institutet (3)
Göteborgs universitet (1)
Språk
Engelska (33)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (28)
Naturvetenskap (5)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy