SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhang Qingjie) "

Sökning: WFRF:(Zhang Qingjie)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kristan, Matej, et al. (författare)
  • The Ninth Visual Object Tracking VOT2021 Challenge Results
  • 2021
  • Ingår i: 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2021). - : IEEE COMPUTER SOC. - 9781665401913 ; , s. 2711-2738
  • Konferensbidrag (refereegranskat)abstract
    • The Visual Object Tracking challenge VOT2021 is the ninth annual tracker benchmarking activity organized by the VOT initiative. Results of 71 trackers are presented; many are state-of-the-art trackers published at major computer vision conferences or in journals in recent years. The VOT2021 challenge was composed of four sub-challenges focusing on different tracking domains: (i) VOT-ST2021 challenge focused on short-term tracking in RGB, (ii) VOT-RT2021 challenge focused on "real-time" short-term tracking in RGB, (iii) VOT-LT2021 focused on long-term tracking, namely coping with target disappearance and reappearance and (iv) VOT-RGBD2021 challenge focused on long-term tracking in RGB and depth imagery. The VOT-ST2021 dataset was refreshed, while VOT-RGBD2021 introduces a training dataset and sequestered dataset for winner identification. The source code for most of the trackers, the datasets, the evaluation kit and the results along with the source code for most trackers are publicly available at the challenge website(1).
  •  
2.
  • Zhang, Juankun, et al. (författare)
  • Nano-porous light-emitting silicon chip as a potential biosensor platform
  • 2007
  • Ingår i: Analytical Letters. - : Taylor andamp;amp; Francis. - 0003-2719 .- 1532-236X. ; 40:8, s. 1549-1555
  • Tidskriftsartikel (refereegranskat)abstract
    • Nano-porous silicon (PS) offers a potential platform for biosensors with benefits both in terms of light emission and the large functional surface area. A light emitting PS chip with a stable and functional surface was fabricated in our laboratory. When protein was deposited on it, the light emission was reduced in proportion to the protein concentration. Based on this property, we developed a rudimentary demonstration of a label-free sensor to detect bovine serum albumin (BSA). A serial concentration of BSA was applied to the light chip and the reduction in light emission was measured. The reduction of the light intensity was linearly related to the concentration of the BSA at concentrations below 10(-5) M. The detection limit was 8 x 10(-9) M.
  •  
3.
  • Zhang, Juankun, et al. (författare)
  • A Label Free Electrochemical Nanobiosensor Study
  • 2009
  • Ingår i: Analytical Letters. - : Taylor and Francis. - 0003-2719 .- 1532-236X. ; 42:17, s. 2905-2913
  • Tidskriftsartikel (refereegranskat)abstract
    • Nano-porous silicon (PS) is an attractive material for incorporation into biosensors, because it has a large surface area combined with the ability to generate both optical and electrical signals. In this paper, we describe a label-free nanobiosensor for bovine serum albumin (BSA). Nano-porous silicon produced in our laboratory was functionalized prior to immobilization of anti-BSA antibody on the surface. Reaction with BSA in phosphate buffered saline (PBS) buffer resulted in an impedance change which was inversely proportional to the concentration of the analyte. The system PBS buffer/antigen-antibody/PS constitutes an electrolyte-insulator-semiconductor (EIS) structure, thus furnishing an impedance EIS nanobiosensor. The linear range of the sensor was 0-0.27mgmL-1 and the sensitivity was less than 10 mu g mL-1.
  •  
4.
  • Zhao, Yunlong, et al. (författare)
  • Stable Alkali Metal Ion Intercalation Compounds as Optimized Metal Oxide Nanowire Cathodes for Lithium Batteries
  • 2015
  • Ingår i: Nano letters (Print). - : American Chemical Society (ACS). - 1530-6984 .- 1530-6992. ; 15:3, s. 2180-2185
  • Tidskriftsartikel (refereegranskat)abstract
    • Intercalation of ions in electrode materials has been explored to improve the rate capability in lithium batteries and supercapacitors, due to the enhanced diffusion of Li+ or electrolyte cations. Here, we describe a synergistic effect between crystal structure and intercalated ion by experimental characterization and ab initio calculations, based on more than 20 nanomaterials: five typical cathode materials together with their alkali metal ion intercalation compounds A-M-O (A = Li, Na, K, Rb; M = V, Mo, Co, Mn, Fe-P). Our focus on nanowires is motivated by general enhancements afforded by nanoscale structures that better sustain lattice distortions associated with charge/discharge cycles. We show that preintercalation of alkali metal ions in V-O and Mo-O yields substantial improvement in the Li ion charge/discharge cycling and rate, compared to A-Co-O, A-Mn-O, and A-Fe-P-O. Diffraction and modeling studies reveal that preintercalation with K and Rb ions yields a more stable interlayer expansion, which prevents destructive collapse of layers and allow Li ions to diffuse more freely. This study demonstrates that appropriate alkali metal ion intercalation in admissible structure can overcome the limitation of cyclability as well as rate capability of cathode materials, besides, the preintercalation strategy provides an effective method to enlarge diffusion channel at the technical level, and more generally, it suggests that the optimized design of stable intercalation compounds could lead to substantial improvements for applications in energy storage.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy