SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhang Shidong) "

Sökning: WFRF:(Zhang Shidong)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wang, Xuran, et al. (författare)
  • De Novo Design of Spiro-Type Hole-Transporting Material: Anisotropic Regulation Toward Efficient and Stable Perovskite Solar Cells
  • 2024
  • Ingår i: RESEARCH. - : AMER ASSOC ADVANCEMENT SCIENCE. - 2096-5168. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • 2,2′,7,7′-Tetrakis(N,N-di-p-methoxyphenyl)-amine-9,9′-spirobifluorene (Spiro-OMeTAD) represents the state-of-the-art hole-transporting material (HTM) in n-i-p perovskite solar cells (PSCs). However, its susceptibility to stability issues has been a long-standing concern. In this study, we embark on a comprehensive exploration of the untapped potential within the family of spiro-type HTMs using an innovative anisotropic regulation strategy. Diverging from conventional approaches that can only modify spirobifluorene with single functional group, this approach allows us to independently tailor the two orthogonal components of the spiro-skeleton at the molecular level. The newly designed HTM, SF-MPA-MCz, features enhanced thermal stability, precise energy level alignment, superior film morphology, and optimized interfacial properties when compared to Spiro-OMeTAD, which contribute to a remarkable power conversion efficiency (PCE) of 24.53% for PSCs employing SF-MPA-MCz with substantially improved thermal stability and operational stability. Note that the optimal concentration for SF-MPA-MCz solution is only 30 mg/ml, significantly lower than Spiro-OMeTAD (>70 mg/ml), which could remarkably reduce the cost especially for large-area processing in future commercialization. This work presents a promising avenue for the versatile design of multifunctional HTMs, offering a blueprint for achieving efficient and stable PSCs.
  •  
2.
  • Liu, Anbu, et al. (författare)
  • DDR1/2 enhance KIT activation and imatinib resistance of primary and secondary KIT mutants in gastrointestinal stromal tumors
  • 2024
  • Ingår i: Molecular Carcinogenesis. - 0899-1987. ; 63:1, s. 75-93
  • Tidskriftsartikel (refereegranskat)abstract
    • Gastrointestinal stromal tumors (GISTs) are predominantly initiated by KIT mutations. In this study, we observed that discoidin domain receptors 1 and 2 (DDR1 and DDR2) exhibited high expression in GISTs, were associated with KIT, and enhanced the activation of both wild-type KIT and primary KIT mutants. Inhibition of DDR1/2 led to a reduction in the activation of KIT and its downstream signaling molecules, ultimately impairing GIST cell survival and proliferation in vitro. Consequently, treatment of mice carrying germline KIT/V558A mutation with DDR1/2 inhibitor significantly impeded tumor growth, and the combined use of DDR1/2 inhibitor and imatinib, the first-line targeted therapeutic agent for GISTs, markedly enhanced tumor growth suppression. In addition, DDR1/2 inhibition resulted in decreased KIT expression, while KIT inhibition led to upregulation of DDR1/2 expression in GISTs. The presence of DDR1/2 also decreased the sensitivity of wild-type KIT or primary KIT mutants to imatinib, indicating a possible role for DDR1/2 in promoting GIST survival during KIT-targeted therapy. The development of drug-resistant secondary KIT mutations is a primary factor contributing to GIST recurrence following targeted therapy. Similar to primary KIT mutants, DDR1/2 can associate with and enhance the activation of secondary KIT mutants, further diminishing their sensitivity to imatinib. In summary, our data demonstrate that DDR1/2 contribute to KIT activation in GISTs and strengthen resistance to imatinib for both primary and secondary KIT mutants, providing a rationale for further exploration of DDR1/2 targeting in GIST treatment.
  •  
3.
  • Zhang, Shidong, et al. (författare)
  • Simple and complex polymer electrolyte fuel cell stack models : A comparison
  • 2018. - 13
  • Ingår i: ECS Transactions. - : The Electrochemical Society. - 1938-6737 .- 1938-5862. - 9781607685395 ; 86, s. 287-300
  • Konferensbidrag (refereegranskat)abstract
    • In this paper, two distinct polymer electrolyte fuel cell stack models are constructed: a detailed numerical model (DNM) employing a fine-scale computational mesh and a coarse-mesh approach based on a distributed resistance analogy (DRA) where diffusion terms in the transport equations are replaced by rate terms. Both methods are applied to a 5-cell, high-temperature polymer electrolyte fuel cell stack with an active area of 200 cm2 per cell. The polarization curve and local current density distributions from both the DRA and DNM are compared with experimental data, finding good agreement. Temperature, pressure, Nernst potential, and species distributions are also exhibited. The DNM displays details of fine-scale local extrema not captured by the DRA; however, the latter requires orders of magnitude less computer processor power and memory for execution. Both methods provide much finer-scale results than present experimental techniques.
  •  
4.
  • Zhang, Yan, et al. (författare)
  • A General Coupling-Based Model Framework for Wideband MIMO Channels
  • 2012
  • Ingår i: IEEE Transactions on Antennas and Propagation. - 0018-926X. ; 60:2, s. 574-586
  • Tidskriftsartikel (refereegranskat)abstract
    • A general coupling-based model framework for wideband multiple-input multiple-output (MIMO) channels is presented in this paper. Under this framework, the channel state information (CSI) tensor can be expressed by the product of a coupling tensor, a complex Gaussian tensor and three unitary matrices. The unitary matrices can be either eigenbases or steering matrices in different domains. The coupling tensor reflects the relationship between the column vectors of these unitary matrices. The complex Gaussian tensor is used to describe the small-scale fading. Several realizations of this framework are introduced, including the wideband Kronecker-based (WKB) model, the wideband eigenvalue-decomposition-based (WEB) model, the wideband virtual presentation (WVP) model and the wideband hybrid (WHY) model. To evaluate the performance of these models, channel measurements were carried out in different indoor scenarios both at Tsinghua University and Lund University. The results show that these models have good agreement with the measured data. Furthermore, we can see that the WHY model can provide a tradeoff between complexity and accuracy in channel synthesis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy