SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhang Xiaoliang) "

Sökning: WFRF:(Zhang Xiaoliang)

  • Resultat 1-50 av 65
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Harner, Tom, et al. (författare)
  • Air synthesis review : polycyclic aromatic compounds in the oil sands region
  • 2018
  • Ingår i: Environmental Reviews. - : Canadian Science Publishing. - 1181-8700 .- 1208-6053. ; 26:4, s. 430-468
  • Forskningsöversikt (refereegranskat)abstract
    • This air synthesis review presents the current state of knowledge on the sources, fates, and effects for polycyclic aromatic compounds (PACs) and related chemicals released to air in the oil sands region (OSR) in Alberta, Canada. Through the implementation of the Joint Canada-Alberta Oil Sands Monitoring Program in 2012 a vast amount of new information on PACs has been acquired through directed monitoring and research projects and reported to the scientific community and public. This new knowledge addresses questions related to cumulative effects and informs the sustainable management of the oil sands resource while helping to identify gaps in understanding and priorities for future work. As a result of this air synthesis review on PACs, the following topics have been identified as new science priorities: (i) improving emissions reporting to better account for fugitive mining emissions of PACs that includes a broader range of PACs beyond the conventional polycyclic aromatic hydrocarbons (PAHs) including, inter alia, alkylated-PAHs (alk-PAHs), dibenzothiophene (DBT), alk-DBTs, nitro-PAHs, oxy-PAHs including quinones and thia-and aza-arenes; (ii) improving information on the ambient concentrations, long-range transport, and atmospheric deposition of these broader classes of PACs and their release (with co-contaminants) from different types of mining activities; (iii) further optimizing electricity-free and cost-effective approaches for assessing PAC deposition (e.g., snow sampling, lichens, passive ambient sampling) spatially across the OSR and downwind regions; (iv) designing projects that integrate monitoring efforts with source attribution models and ecosystem health studies to improve understanding of sources, receptors, and effects; (v) further optimizing natural deposition archives (e.g., sediment, peat, tree rings) and advanced forensic techniques (e.g., isotope analysis, marker compounds) to provide better understanding of sources of PACs in the OSR over space and time; (vi) conducting process research to improve model capabilities for simulating atmospheric chemistry of PACs and assessing exposure to wildlife and humans; and (vii) developing tools and integrated strategies for assessing cumulative risk to wildlife and humans by accounting for the toxicity of the mixture of chemicals in air rather than on a single compound basis.
  •  
2.
  • Huang, Zhifeng, et al. (författare)
  • Three-dimensional posture optimization for biped robot stepping over large ditch based on a ducted-fan propulsion system
  • 2020
  • Ingår i: IEEE International Conference on Intelligent Robots and Systems. - 2153-0858 .- 2153-0866. ; , s. 3591-3597
  • Konferensbidrag (refereegranskat)abstract
    • The recent progress of an ongoing project utilizing a ducted-fan propulsion system to improve a humanoid robot's ability to step over large ditches is reported. A novel method (GAS) based on the genetic algorithm with smoothness constraint can effectively minimize the thrust by optimizing the robot's posture during 3D stepping. The significant advantage of the method is that it can realize the continuity and smoothness of the thrust and pelvis trajectories. The method enables the landing point of the robot's swing foot to be not only in the forward but also in a side direction. The methods were evaluated by simulation and by being applied on a prototype robot, JetHR1. By keeping a quasistatic balance, the robot could step over a ditch with a span of 450 mm (as much as 97% of the length of the robot's leg) in 3D stepping.
  •  
3.
  • Lensink, Marc F., et al. (författare)
  • Impact of AlphaFold on structure prediction of protein complexes: The CASP15-CAPRI experiment
  • 2023
  • Ingår i: Proteins. - : WILEY. - 0887-3585 .- 1097-0134.
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the results for CAPRI Round 54, the 5th joint CASP-CAPRI protein assembly prediction challenge. The Round offered 37 targets, including 14 homodimers, 3 homo-trimers, 13 heterodimers including 3 antibody-antigen complexes, and 7 large assemblies. On average similar to 70 CASP and CAPRI predictor groups, including more than 20 automatics servers, submitted models for each target. A total of 21 941 models submitted by these groups and by 15 CAPRI scorer groups were evaluated using the CAPRI model quality measures and the DockQ score consolidating these measures. The prediction performance was quantified by a weighted score based on the number of models of acceptable quality or higher submitted by each group among their five best models. Results show substantial progress achieved across a significant fraction of the 60+ participating groups. High-quality models were produced for about 40% of the targets compared to 8% two years earlier. This remarkable improvement is due to the wide use of the AlphaFold2 and AlphaFold2-Multimer software and the confidence metrics they provide. Notably, expanded sampling of candidate solutions by manipulating these deep learning inference engines, enriching multiple sequence alignments, or integration of advanced modeling tools, enabled top performing groups to exceed the performance of a standard AlphaFold2-Multimer version used as a yard stick. This notwithstanding, performance remained poor for complexes with antibodies and nanobodies, where evolutionary relationships between the binding partners are lacking, and for complexes featuring conformational flexibility, clearly indicating that the prediction of protein complexes remains a challenging problem.
  •  
4.
  • Song, Guohe, et al. (författare)
  • TIMP1 is a prognostic marker for the progression and metastasis of colon cancer through FAK-PI3K/AKT and MAPK pathway
  • 2016
  • Ingår i: Journal of Experimental & Clinical Cancer Research. - London, United Kingdom : BioMed Central (BMC). - 1756-9966. ; 35:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Tissue inhibitor matrix metalloproteinase 1 (TIMP1) plays a vital role in carcinogenesis, yet its precise functional roles and regulation remain unclear. In this study, we aim to investigate its biological function and clinical significance in human colon cancer.Methods: We analyzed the expression of TIMP1 in both public database (Oncomine and TCGA) and 94 cases of primary colon cancer and matched normal colon tissue specimens. The underlying mechanisms of altered TIMP1 expression on cell tumorigenesis, proliferation, and metastasis were explored in vitro and in vivo.Results: TIMP1 was overexpressed in colon tumorous tissues and lymph node metastasis specimens than in normal tissues. The aberrant expression of TIMP1 was significantly associated with the regional lymph node metastasis (p = 0.033), distant metastasis (p = 0.039), vascular invasion (p = 0.024) and the American Joint Committee on Cancer (AJCC) stage (p = 0.026). Cox proportional hazards model showed that TIMP1 was an independent prognostic indicator of disease-free survival (HR = 2.603, 95 % CI: 1.115-6.077, p = 0.027) and overall survival (HR = 2.907, 95 % CI: 1.254-6.737, p = 0.013) for patients with colon cancer. Consistent with this, our findings highlight that suppression of TIMP1 expression decreased proliferation, and metastasis but increased apoptosis by inducing TIMP1 specific regulated FAK-PI3K/AKT and MAPK pathway.Conclusion: TIMP1 might play an important role in promoting tumorigenesis and metastasis of human colon cancer and function as a potential prognostic indicator for colon cancer.
  •  
5.
  • Sveinbjörnsson, Kári, et al. (författare)
  • Ambient air-processed mixed-ion perovskites for high-efficiency solar cells
  • 2016
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 4:42, s. 16536-16545
  • Tidskriftsartikel (refereegranskat)abstract
    • Mixed-ion (FAPbI(3))(1-x)(MAPbBr(3))(x) perovskite solar cells have achieved power conversion efficiencies surpassing 20%. However, in order to obtain these high efficiencies the preparation is performed in a controlled inert atmosphere. Here, we report a procedure for manufacturing highly efficient solar cells with a mixed-ion perovskite in ambient atmosphere. By including a heating step at moderate temperatures of the mesoporous titanium dioxide substrates, and spin-coating the perovskite solution on the warm substrates in ambient air, a red intermediate phase is obtained. Annealing the red phase at 100 degrees C results in a uniform and crystalline perovskite film, whose thickness is dependent on the substrate temperature prior to spin-coating. The temperature was optimized between 20 and 100 degrees C and it was observed that 50 degrees C substrate temperature yielded the best solar cell performances. The average efficiency of the best device was 17.6%, accounting for current-voltage (I-V) measurement hysteresis, with 18.8% performance in the backward scan direction and 16.4% in the forward scan direction. Our results show that it is possible to manufacture high-efficiency mixed-ion perovskite solar cells under ambient conditions, which is relevant for large-scale and low-cost device manufacturing processing.
  •  
6.
  • Xiao, Chao, et al. (författare)
  • RBBP6 increases radioresistance and serves as a therapeutic target for preoperative radiotherapy in colorectal cancer
  • 2018
  • Ingår i: Cancer Science. - : Blackwell Publishing. - 1347-9032 .- 1349-7006. ; 109:4, s. 1075-1087
  • Tidskriftsartikel (refereegranskat)abstract
    • Radiotherapy (RT) can be used as preoperative treatment to downstage initially unresectable locally rectal carcinoma, but the radioresistance and recurrence remain significant problems. Retinoblastoma binding protein 6 (RBBP6) has been implicated in the regulation of cell cycle, apoptosis and chemoresistance both in vitro and in vivo. This study investigated whether the inhibition of RBBP6 expression would improve radiosensitivity in human colorectal cancer cells. After SW620 and HT29 cells were exposed to radiation, the levels of RBBP6 mRNA and protein increased over time in both two cells. Moreover, a significant reduction in clonogenic survival and a decrease in cell viability in parallel with an obvious increase in cell apoptosis were demonstrated in irradiated RBBP6-knockdown cells. Besides, transfection with RBBP6 shRNA improved levels of G2-M phase arrest which blocked the cells in a more radiosensitive period of the cell cycle. These observations indicated that cell cycle and apoptosis mechanisms may be connected with tumor cell survival following radiotherapy. In vivo, tumor growth rate of nude mice in RBBP6-knockdown group was significantly slower than that in other groups. These results indicated that RBBP6 overexpression could resist colorectal cancer cells against radiation by regulating cell cycle and apoptosis pathways, and inhibition of RBBP6 could enhance radiosensitivity of human colorectal cancer.
  •  
7.
  • Yu, Yewei, et al. (författare)
  • Neural network based iterative learning control for magnetic shape memory alloy actuator with iteration-dependent uncertainties
  • 2023
  • Ingår i: Mechanical Systems and Signal Processing. - : Elsevier BV. - 0888-3270 .- 1096-1216. ; 187
  • Tidskriftsartikel (refereegranskat)abstract
    • The magnetic shape memory alloy based actuator (MSMA-BA) is an indispensable component mechanism for high-precision positioning systems as it possesses the advantages of high precision, low energy consumption, and large stroke. However, hysteresis is an intrinsic property of MSMA material, which seriously affects the positioning accuracy of MSMA-BA. In this study, we propose a multi meta-model approach incorporating the nonlinear auto-regressive moving average with exogenous inputs (NARMAX) and Bouc–Wen (BW) models to describe the complex dynamic hysteresis of MSMA-BA. In particular, the BW model is introduced into the NARMAX model as an exogenous variable function, and a wavelet neural network (WNN) is adopted to construct the nonlinear function of the multi meta-model. In addition, iterative learning control is combined with a WNN to improve its convergence speed. A two-valued function is employed in the controller design process, so as to make use of history iteration information in updating control input. The main contribution of this study is the convergence analysis of the proposed iteration learning controller with iteration-dependent uncertainties (non-strict repetition of the initial state and varying iteration length). The experiments conducted on the MSMA-BA illustrate the validity of the proposed control scheme.
  •  
8.
  • Zhang, Jinbao, et al. (författare)
  • Efficient solid-state dye sensitized solar cells : The influence of dye molecular structures for the in-situ photoelectrochemically polymerized PEDOT as hole transporting material
  • 2016
  • Ingår i: NANO ENERGY. - : Elsevier BV. - 2211-2855. ; 19, s. 455-470
  • Tidskriftsartikel (refereegranskat)abstract
    • Solid-state dye sensitized solar cells (sDSCs) with organic small molecule hole transporting materials (HTMs) have limited efficiencies due to the incomplete pore filling of the HTMs in the thick mesoporous electrodes and the low hole conductivity of HTMs. Hereby, highly efficient sDSCs with power conversion efficiency of 7.11% and record photocurrent of 13.4 mA cm-2 are reported, prepared by effectively incorporating in-situ photoelectrochemically polymerized PEDOT as HTM in combination with a multifunctional organic, metal-free dye. In order to fundamentally understand how the dye molecules affect the photoelectrochemical polymerization (PEP), the properties of the generated PEDOT and the photovoltaic performance, sDSCs based on a series of dyes are systematically investigated. Detailed comparative studies reveal that the difference between the dye redox potential and monomer onset oxidation potential plays a crucial role in the PEP kinetics and the doping density of PEDOT HTM. The structure of the dyes, functioning as an electron blocking layer, affects the charge recombination at the TiO2/dye/PEDOT interface. The analysis shows that a donor-n-acceptor dye with well-tuned energy levels and bulky structure results in an in-situ electrochemically doped PEDOT HTM with a high hole conductivity (2.0 S cm(-1)) in sDSCs, leading to efficient dye regeneration and photocharge collection. It is hoped that this work will further encourage research on the future design of new dye molecules for an efficient PEP in order to further enhance the photovoltaic performance of solid-state dye sensitized solar cells.
  •  
9.
  • Zhang, Xiaoliang, et al. (författare)
  • Inorganic CsPbI3 Perovskite Coating on PbS Quantum Dot for Highly Efficient and Stable Infrared Light Converting Solar Cells
  • 2018
  • Ingår i: Advanced Energy Materials. - : Wiley-VCH Verlagsgesellschaft. - 1614-6832 .- 1614-6840. ; 8:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Solution-processed colloidal quantum dot (CQD) solar cells harvesting the infrared part of the solar spectrum are especially interesting for future use in semitransparent windows or multilayer solar cells. To improve the device power conversion efficiency (PCE) and stability of the solar cells, surface passivation of the quantum dots is vital in the research of CQD solar cells. Herein, inorganic CsPbI3 perovskite (CsPbI3-P) coating on PbS CQDs with a low-temperature, solution-processed approach is reported. The PbS CQD solar cell with CsPbI3-P coating gives a high PCE of 10.5% and exhibits remarkable stability both under long-term constant illumination and storage under ambient conditions. Detailed characterization and analysis reveal improved passivation of the PbS CQDs with the CsPbI3-P coating, and the results suggest that the lattice coherence between CsPbI3-P and PbS results in epitaxial induced growth of the CsPbI3-P coating. The improved passivation significantly diminishes the sub-bandgap trap-state assisted recombination, leading to improved charge collection and therefore higher photovoltaic performance. This work therefore provides important insight to improve the CQD passivation by coating with an inorganic perovskite ligand for photovoltaics or other optoelectronic applications.
  •  
10.
  • Zhang, Xiaoliang, et al. (författare)
  • Slow recombination in quantum dot solid solar cellusing p–i–n architecture with organic p-type holetransport material
  • 2015
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 3:41, s. 20579-20585
  • Tidskriftsartikel (refereegranskat)abstract
    • The interfaces between different materials in the heterojunction colloidal quantum dot (QD) solar cell playan important role for charge carrier separation, recombination and collection. Here, an organic–inorganichybrid p–i–n architecture for the heterojunction PbS QD solid solar cell is constructed to increase thecharge extraction and reduce charge recombination. Heavily doped poly(3-hexylthiophene-2,5-diyl)(P3HT) is applied as hole transport interlayer between the QD film and metal contact electrode. Theresults show that the P3HT interlayer diminishes the charge carrier recombination at the QD film/metalcontact electrode interface leading to increased open-circuit voltage and increased electron life time.Furthermore, after incorporation of P3HT interlayer an additional p–i heterojunction might form atP3HT/QD film interface resulting in increased depletion region, which promotes charge carrierextraction under working conditions. Two other organic p-type interlayers are also investigated,however, the results indicate that a barrier for charge extraction is formed for these devices, which isexplained by the difference in energy levels. The solar cell with the P3HT interlayer exhibits a powerconversion efficiency of 5.1% at 1 sun of illumination and ambient atmosphere, which is 20% highercompared to the solar cell without any hole transport interlayer.
  •  
11.
  • Zhang, Xiaoliang, et al. (författare)
  • Solution processed flexible and bending durable heterojunction colloidal quantum dot solar cell
  • 2015
  • Ingår i: Nanoscale. - : Royal Society of Chemistry (RSC). - 2040-3364 .- 2040-3372. ; 7:27, s. 11520-11524
  • Tidskriftsartikel (refereegranskat)abstract
    • A flexible hybrid heterojunction PbS colloidal quantum dot solar cell, where the photoactive layers are deposited using a solution processed fabrication approach under ambient condition and at room temperature is presented. The bending stability of the obtained solar cell is evaluated. The results show that the solar cell exhibits high bending stability and even under the bent state the cell also maintains a high performance, which shows the potential of the quantum dot solar cell toward a lightweight, bendable power source with many possible applications.
  •  
12.
  • Zhang, Xiaoliang, et al. (författare)
  • ZnO@Ag2S core-shell nanowire arrays for environmentally friendly solid-state quantum dot-sensitized solar cells with panchromatic light capture and enhanced electron collection
  • 2015
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry (RSC). - 1463-9076 .- 1463-9084. ; 17:19, s. 12786-12795
  • Tidskriftsartikel (refereegranskat)abstract
    • A solid-state environmentally friendly Ag2S quantum dot-sensitized solar cell (QDSSC) is demonstrated. The photovoltaic device is fabricated by applying ZnO@Ag2S core-shell nanowire arrays (NWAs) as light absorbers and electron conductors, and poly-3-hexylthiophene (P3HT) as a solid-state hole conductor. Ag2S quantum dots (QDs) were directly grown on the ZnO nanowires by the successive ionic layer adsorption and reaction (SILAR) method to obtain the core-shell nanostructure. The number of SILAR cycles for QD formation and the length of the core-shell NWs significantly affect the photocurrent. The device with a core-shell NWAs photoanode shows a power conversion efficiency increase by 32% compared with the device based on a typical nanoparticle-based photoanode with Ag2S QDs. The enhanced performance is attributed to enhanced collection of the photogenerated electrons utilizing the ZnO nanowire as an efficient pathway for transporting the photogenerated electrons from the QD to the contact.
  •  
13.
  • Andruszkiewicz, Aneta, et al. (författare)
  • Perovskite and quantum dot tandem solar cells with interlayer modification for improved optical semitransparency and stability
  • 2021
  • Ingår i: Nanoscale. - : Royal Society of Chemistry. - 2040-3364 .- 2040-3372. ; 13:12, s. 6234-6240
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, four-terminal (4T) tandem solar cells were fabricated by using a methylammonium lead iodide (MAPbI3) perovskite solar cell (PSC) as the front-cell and a lead sulfide (PbS) colloidal quantum dot solar cell (CQDSC) as the back-cell. Different modifications of the tandem interlayer, at the interface between the sub-cells, were tested in order to improve the infrared transparency of the perovskite sub-cell and consequently increase the utilization of infrared (IR) light by the tandem system. This included the incorporation of a semi-transparent thin gold electrode (Au) on the MAPbI3 solar cell, followed by adding a molybdenum(VI) oxide (MoO3) layer or a surlyn layer. These interlayer modifications resulted in an increase of the IR transmittance to the back cell and improved the optical stability, compared to that in the reference devices. This investigation shows the importance of the interlayer, connecting the PSC with a strong absorption in the visible region and the CQDSC with a strong infrared absorption to obtain efficient next-generation tandem photovoltaics (PVs).
  •  
14.
  • Chen, Jingxuan, et al. (författare)
  • Emerging perovskite quantum dot solar cells : feasible approaches to boost performance
  • 2021
  • Ingår i: Energy & Environmental Science. - CAMBRIDGE ENGLAND : Royal Society of Chemistry. - 1754-5692 .- 1754-5706. ; 14:1, s. 224-261
  • Forskningsöversikt (refereegranskat)abstract
    • Lead halide perovskite quantum dots (PQDs), also called perovskite nanocrystals, are considered as one of the most promising classes of photovoltaic materials for solar cells due to their prominent optoelectronic properties and simple preparation techniques. Remarkable achievements in PQD solar cells (PQDSCs) have been made. In particular, the power conversion efficiency of PQDSCs has been largely pushed from 10.77% to 17.39% (certified 16.6%) by finely controlling the surface chemistry of PQDs and the device physics of PQDSCs. In this review, we summarize the latest advances of emerging PQDSCs and discuss various strategies applied to improve the device performance of PQDSCs, including the synthesis methods, compositional engineering and surface chemistry of PQDs. Moreover, the device operation of PQDSCs is discussed to highlight the effect of device architecture on the photovoltaic performance of PQDSCs. Facing the practical applications of the PQDSCs under ambient conditions, device stability is also highlighted. Finally, conclusions and perspectives are presented along with the possible challenges and opportunities to promote development steps of PQDSCs with higher photovoltaic performance and robust stability.
  •  
15.
  • Chen, Jingxuan, et al. (författare)
  • Regulating Thiol Ligands of p-Type Colloidal Quantum Dots for Efficient Infrared Solar Cells
  • 2021
  • Ingår i: ACS Energy Letters. - : American Chemical Society (ACS). - 2380-8195. ; 6:5, s. 1970-1989
  • Tidskriftsartikel (refereegranskat)abstract
    • The p-type semiconducting colloidal quantum dot (CQD), working as a hole conductor in CQD solar cells (CQDSCs), is critical for charge carrier extraction and therefore, to large extent, determines the device's photovoltaic performance. However, during the preparation of a p-type CQD solid film on the top of an n-type CQD solid film, forming a p-n heterojunction within the CQDSCs, the optoelectronic properties of the underlayered n-type CQD solid film are significantly affected by conventional 1,2-ethanedithiol (EDT) ligands due to its high reactivity. Herein, a series of thiol ligands are comprehensively studied for p-type CQDs, which suggests that, by finely controlling the interaction between the CQDs and thiol ligands during the preparation of p-type CQD solid films, the n-type CQD solid films can be well protected and avoid destruction induced by thiol ligands. The p-type CQD solid film with 4-aminobenzenethiol (ABT) passivating the CQD surface exhibits better optoelectronic properties than the conventional p-type EDT-based CQD solid films, resulting in an improved photovoltaic performance in CQDSCs.
  •  
16.
  • Cheng, Xiaoliang, et al. (författare)
  • A modified coupled complex boundary method for an inverse chromatography problem
  • 2018
  • Ingår i: Journal of Inverse and Ill-Posed Problems. - : Walter de Gruyter. - 0928-0219 .- 1569-3945. ; 26:1, s. 33-49
  • Tidskriftsartikel (refereegranskat)abstract
    • Adsorption isotherms are the most important parameters in rigorous models of chromatographic processes. In this paper, in order to recover adsorption isotherms, we consider a coupled complex boundary method (CCBM), which was previously proposed for solving an inverse source problem [2]. With CCBM, the original boundary fitting problem is transferred to a domain fitting problem. Thus, this method has advantages regarding robustness and computation in reconstruction. In contrast to the traditional CCBM, for the sake of the reduction of computational complexity and computational cost, the recovered adsorption isotherm only corresponds to the real part of the solution of a forward complex initial boundary value problem. Furthermore, we take into account the position of the profiles and apply the momentum criterion to improve the optimization progress. Using Tikhonov regularization, the well-posedness, convergence properties and regularization parameter selection methods are studied. Based on an adjoint technique, we derive the exact Jacobian of the objective function and give an algorithm to reconstruct the adsorption isotherm. Finally, numerical simulations are given to show the feasibility and efficiency of the proposed regularization method.
  •  
17.
  • Cui, Chao, et al. (författare)
  • A Full Power Range ZVS Control Technology for Bidirectional Inductive Power Transfer System
  • 2020
  • Ingår i: IECON Proceedings (Industrial Electronics Conference). - 2577-1647 .- 2162-4704. ; 2020-October, s. 3861-3865
  • Konferensbidrag (refereegranskat)abstract
    • Inductive Power Transfer (IPT) technology has received extensive application research due to its safety and convenience. As a circuit topology with high efficiency and high controllability, dual active bridge (DAB) has been used in IPT system in recent years. In high-power applications, the EMI generated by the power device switch becomes more significant, which in turn negatively affects the efficiency and even the stability of the IPT system. There are several ways to reduce EMI. This article studies from the perspective of zero voltage switching (ZVS) of the DAB. When the duty cycle of the full bridge changes, the soft switching may not be maintained. This paper calculates and analyzes the ZVS operating range of the system under different situations. On this basis, a control method is proposed to achieve ZVS in the full power range of the system by adjusting the bilateral load angle. And the efficiency and stability of the system are improved. The correctness of the above theory and control method is verified through simulations.
  •  
18.
  • Ji, Qingyuan, et al. (författare)
  • GraphPro : A Graph-based Proactive Prediction Approach for Link Speeds on Signalized Urban Traffic Network
  • 2022
  • Ingår i: Conference Proceedings. - : Institute of Electrical and Electronics Engineers (IEEE). ; , s. 339-346
  • Konferensbidrag (refereegranskat)abstract
    • This paper proposes GraphPro, a short-term link speed prediction framework for signalized urban traffic networks. Different from other traditional approaches that adopt only reactive inputs (i.e., surrounding traffic data), GraphPro also accepts proactive inputs (i.e., traffic signal timing). This allows GraphPro to predict link speed more accurately, depending on whether or not there is a contextual change in traffic signal timing. A Wasserstein generative adversarial network (WGAN) structure, including a generator (prediction model) and a discriminator, is employed to incorporate unprecedented network traffic states and ensures a high level of generalizability for the prediction model. A hybrid graph block, comprised of a reactive cell and a proactive cell, is implemented into each neural layer of the generator. In order to jointly capture spatio-temporal influences and signal contextual information on traffic links, the two cells adopt several key neural network-based components, including graph convolutional network, recurrent neural architecture, and self-attention mechanism. The double-cell structure ensures GraphPro learns from proactive input only when required. The effectiveness and efficiency of GraphPro are tested on a short-term link speed prediction task using real-world traffic data. Due to the capabilities of learning from real data distribution and generating unseen samples, GraphPro offers a more reliable and robust prediction when compared with state-of-the-art data-driven models.
  •  
19.
  • Jia, Donglin, et al. (författare)
  • Dual Passivation of CsPbI3 Perovskite Nanocrystals with Amino Acid Ligands for Efficient Quantum Dot Solar Cells
  • 2020
  • Ingår i: Small. - : WILEY-V C H VERLAG GMBH. - 1613-6810 .- 1613-6829. ; 16:24
  • Tidskriftsartikel (refereegranskat)abstract
    • Inorganic CsPbI3 perovskite quantum dot (PQD) receives increasing attention for the application in the new generation solar cells, but the defects on the surface of PQDs significantly affect the photovoltaic performance and stability of solar cells. Herein, the amino acids are used as dual-passivation ligands to passivate the surface defects of CsPbI3 PQDs using a facile single-step ligand exchange strategy. The PQD surface properties are investigated in depth by combining experimental studies and theoretical calculation approaches. The PQD solid films with amino acids as dual-passivation ligands on the PQD surface are thoroughly characterized using extensive techniques, which reveal that the glycine ligand can significantly improve defect passivation of PQDs and therefore diminish charge carrier recombination in the PQD solid. The power conversion efficiency (PCE) of the glycine-based PQD solar cell (PQDSC) is improved by 16.9% compared with that of the traditional PQDSC fabricated with Pb(NO3)(2) treating the PQD surface, owning to improved charge carrier extraction. Theoretical calculations are carried out to comprehensively understand the thermodynamic feasibility and favorable charge density distribution on the PQD surface with a dual-passivation ligand.
  •  
20.
  • Jia, Donglin, et al. (författare)
  • Highly Stabilized Quantum Dot Ink for Efficient Infrared Light Absorbing Solar Cells
  • 2019
  • Ingår i: Advanced Energy Materials. - : WILEY-V C H VERLAG GMBH. - 1614-6832 .- 1614-6840. ; 9:44
  • Tidskriftsartikel (refereegranskat)abstract
    • Liquid-state ligand exchange provides an efficient approach to passivate a quantum dot (QD) surface with small binding species and achieve a QD ink toward scalable QD solar cell (QDSC) production. Herein, experimental studies and theoretical simulations are combined to establish the physical principles of QD surface properties induced charge carrier recombination and collection in QDSCs. Ammonium iodide (AI) is used to thoroughly replace the native oleic acid ligand on the PbS QD surface forming a concentrated QD ink, which has high stability of more than 30 d. The ink can be directly applied for the preparation of a thick QD solid film using a single deposition step method and the QD solid film shows better characteristics compared with that of the film prepared with the traditional PbX2 (X = I or Br) post-treated QD ink. Infrared light-absorbing QDSC devices are fabricated using the PbS-AI QD ink and the devices give a higher photovoltaic performance compared with the devices fabricated with the traditional PbS-PbX2 QD ink. The improved photovoltaic performance in PbS-AI-based QDSC is attributed to diminished charge carrier recombination induced by the sub-bandgap traps in QDs. A theoretical simulation is carried out to atomically link the relationship of QDSC device function with the QD surface properties.
  •  
21.
  • Jin, J., et al. (författare)
  • A GAN-Based Short-Term Link Traffic Prediction Approach for Urban Road Networks Under a Parallel Learning Framework
  • 2022
  • Ingår i: IEEE transactions on intelligent transportation systems (Print). - : Institute of Electrical and Electronics Engineers (IEEE). - 1524-9050 .- 1558-0016. ; 23:9, s. 16185-16196
  • Tidskriftsartikel (refereegranskat)abstract
    • Road link speed is often employed as an essential measure of traffic state in the operation of an urban traffic network. Not only real-time traffic demand but also signal timings and other local planning factors are major influential factors. This paper proposes a short-term traffic speed prediction approach, called PL-WGAN, for urban road networks, which is considered an important part of a novel parallel learning framework for traffic control and operation. The proposed method applies Wasserstein Generative Adversarial Nets (WGAN) for robust data-driven traffic modeling using a combination of generative neural network and discriminative neural network. The generative neural network models the road link features of the adjacent intersections and the control parameters of intersections using a hybrid graph block. In addition, the spatial-temporal relations are captured by stacking a graph convolutional network (GCN), a recurrent neural network (RNN), and an attention mechanism. A comprehensive computational experiment was carried out including comparing model prediction and computational performances with several state-of-the-art deep learning models. The proposed approach has been implemented and applied for predicting short-term link traffic speed in a large-scale urban road network in Hangzhou, China. The results suggest that it provides a scalable and effective traffic prediction solution for urban road networks. 
  •  
22.
  • Li, Ping, et al. (författare)
  • Fructose sensitivity is suppressed in Arabidopsis by the transcription factor ANAC089 lacking the membrane-bound domain
  • 2011
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 108:8, s. 3436-3441
  • Tidskriftsartikel (refereegranskat)abstract
    • In living organisms sugars not only provide energy and carbon skeletons but also act as evolutionarily conserved signaling molecules. The three major soluble sugars in plants are sucrose, glucose, and fructose. Information on plant glucose and sucrose signaling is available, but to date no fructose-specific signaling pathway has been reported. In this study, sugar repression of seedling development was used to study fructose sensitivity in the Landsberg erecta (Ler)/Cape Verde Islands (Cvi) recombinant inbred line population, and eight fructose-sensing quantitative trait loci (QTLs) (FSQ1-8) were mapped. Among them, FSQ6 was confirmed to be a fructose-specific QTL by analyzing near-isogenic lines in which Cvi genomic fragments were introgressed in the Ler background. These results indicate the existence of a fructose-specific signaling pathway in Arabidopsis. Further analysis demonstrated that the FSQ6-associated fructose-signaling pathway functions independently of the hexokinase1 (HXK1) glucose sensor. Remarkably, fructose-specific FSQ6 downstream signaling interacts with abscisic acid (ABA)- and ethylene-signaling pathways, similar to HXK1-dependent glucose signaling. The Cvi allele of FSQ6 acts as a suppressor of fructose signaling. The FSQ6 gene was identified using map-based cloning approach, and FSQ6 was shown to encode the transcription factor gene Arabidopsis NAC (petunia No apical meristem and Arabidopsis transcription activation factor 1, 2 and Cup-shaped cotyledon 2) domain containing protein 89 (ANAC089). The Cvi allele of FSQ6/ANAC089 is a gain-of-function allele caused by a premature stop in the third exon of the gene. The truncated Cvi FSQ6/ANAC089 protein lacks a membrane association domain that is present in ANAC089 proteins from other Arabidopsis accessions. As a result, Cvi FSQ6/ANAC089 is constitutively active as a transcription factor in the nucleus.
  •  
23.
  • Lin, Guangliang, et al. (författare)
  • A parametric level set based collage method for an inverse problem in elliptic partial differential equations
  • 2018
  • Ingår i: Journal of Computational and Applied Mathematics. - : Elsevier. - 0377-0427 .- 1879-1778. ; 340, s. 101-121
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, based on the collage theorem, we develop a new numerical approach to reconstruct the locations of discontinuity of the conduction coefficient in elliptic partial differential equations (PDEs) with inaccurate measurement data and coefficient value. For a given conductivity coefficient, one can construct a contraction mapping such that its fixed point is just the gradient of a solution to the elliptic system. Therefore, the problem of reconstructing a conductivity coefficient in PDEs can be considered as an approximation of the observation data by the fixed point of a contraction mapping. By collage theorem, we translate it to seek a contraction mapping that keeps the observation data as close as possible to itself, which avoids solving adjoint problems when applying the gradient descent method to the corresponding optimization problem. Moreover, the total variation regularizing strategy is applied to tackle the ill-posedness and the parametric level set technique is adopted to represent the discontinuity of the conductivity coefficient. Various numerical simulations are given to show the efficiency of the proposed method.
  •  
24.
  • Liu, Jianhua, et al. (författare)
  • In situ growth of perovskite stacking layers for high-efficiency carbon-based hole conductor free perovskite solar cells
  • 2019
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 7:22, s. 13777-13786
  • Tidskriftsartikel (refereegranskat)abstract
    • The interfacial properties between a perovskite layer and carbon electrode are critical for the photovoltaic performance of carbon electrode-based perovskite solar cells (PSCs). Herein, a methylammonium lead mixed halide (MAPbIxBr3−x) perovskite layer is in situ grown on the top of a methylammonium lead iodide (MAPbI3) perovskite layer forming a MAPbI3/MAPbIxBr3−x perovskite stacking structure (PSS) to improve the interfacial properties at the perovskite/carbon electrode interface. The charge carrier dynamics in both the perovskite and the PSC device induced by the MAPbIxBr3−x perovskite stacking layer are studied using extensive characterization. The charge interfacial recombination at the perovskite/carbon electrode interface is significantly diminished using the PSS within the PSC, resulting in largely improved charge extraction and therefore high photovoltaic performance. The PSS-based PSC shows a power conversion efficiency of up to 16.2% (increased by 43% compared with that of a conventional MAPbI3-based PSC), which is among the highest efficiencies of carbon electrode-based hole conductor free PSCs. Meanwhile, the PSS-based PSC also exhibits good stability under both continuous illumination and storage under dark conditions. This work may provide a new avenue to fine tune the interfacial properties of carbon electrode-based PSCs for further improving their photovoltaic performance.
  •  
25.
  • Liu, Jianhua, et al. (författare)
  • Metal nanowire networks : Recent advances and challenges for new generation photovoltaics
  • 2019
  • Ingår i: Materials Today Energy. - : ELSEVIER SCI LTD. - 2468-6069. ; 13, s. 152-185
  • Forskningsöversikt (refereegranskat)abstract
    • Transparent conducting electrodes which allow photons passing through and simultaneously transfers the charge carriers are critical for the construction of high-performance photovoltaic cells. Electrodes based on metal oxides, such as indium-doped tin oxide (ITO) or fluorine-doped tin oxide (FTO), may have limited application in new generation flexible solar cells, which employ solution-processed roll-to-roll or ink-printing techniques toward large-area-fabrication approach, due to their brittleness and poor mechanical properties. Metal nanowire network (MNWN) emerges as a highly potential alternative candidate instead of ITO or FTO due to the high transparency, low sheet resistance, low cost, solution processable and compatibility with a flexible substrate for high throughput production. This feature article systematically summarizes the recent advances of the MNWNs, including new concepts and emerging strategies for the synthesis of metal nanowires (MNWs), various approaches for the preparation of MNWNs and comprehensively discusses the novel MNWN electrodes prepared on different substrates. The state-of-the-art new generation solar cell devices, such as transparent, flexible and light-weight solar cells, with MNWN as a transparent conductive electrode are emphasized. Finally, the opportunities and challenges for the development of MNWN electrodes toward application in the new generations of photovoltaic devices are discussed.
  •  
26.
  • Liu, Qi, et al. (författare)
  • Surface passivation and hole extraction : Bifunctional interfacial engineering toward high-performance all-inorganic CsPbIBr2 perovskite solar cells with efficiency exceeding 12%
  • 2022
  • Ingår i: Journal of Energy Challenges and Mechanics. - : Elsevier BV. - 2056-9386. ; 74, s. 387-393
  • Tidskriftsartikel (refereegranskat)abstract
    • All-inorganic CsPbIBr2 perovskite solar cells (PSCs) have attracted considerable research attention in recent years due to their excellent thermal stability. However, their power conversion efficiencies (PCEs) are relatively low and still far below the theoretical limit. Here, we report the use of an organic dye molecule (namely VG1-C8) as a bifunctional interlayer between perovskite and the hole-transport layer in CsPbIBr2 PSCs. Combined experimental and theoretical calculation results disclose that the mul-tiple Lewis base sites in VG1-C8 can effectively passivate the trap states on the perovskite films. Meanwhile, the p-conjugated dye molecule significantly accelerates the hole extraction from the per-ovskite absorber as evidenced by the photoluminescence analysis. Consequently, the VG1-C8 treatment simultaneously boosts the photovoltage and photocurrent density values from 1.26 V and 10.80 mA cm -2 to 1.31 V and 12.44 mA cm -2, respectively. This leads to a significant enhancement of PCE from 9.20% to 12.10% under one sun irradiation (AM 1.5G). To our knowledge, this is the record efficiency reported so far for CsPbIBr2 PSCs. Thus, the present work demonstrates an effective interfacial passivation strategy for the development of highly efficient PSCs.
  •  
27.
  • Park, Byung-wook, et al. (författare)
  • Analysis of crystalline phases and integration modelling of charge quenching yields in hybrid lead halide perovskite solar cell materials
  • 2017
  • Ingår i: Nano Energy. - : ELSEVIER SCIENCE BV. - 2211-2855 .- 2211-3282. ; 40, s. 596-606
  • Tidskriftsartikel (refereegranskat)abstract
    • Organic inorganic metal halide perovskites (OIHPs) has emerged as promising photovoltaic materials the latest years. Many OIHPs, however, have complex material compositions with mixed cation and halide compositions, phase mixtures, as well as beneficial remains of PbI2 in the final solar cell materials where the complex material composition with dual conduction and valence band states and its effects on the performance remain unclear. Here, we report an approach to analyze the phase mixture, order-disorder phases and the emissive electronic states via a 4-state model of the photoluminescence yield. The approach is applied to scaffold layer perovskite materials with different mixed halide composition. The optical transitions and the full emission spectra are de-convoluted to quantify the band gaps and charge quenching yields in the OIHPs. An approach to extract the excited state coupling parameters within the 4-state model is also briefly given. The integration model is finally utilized in charge quenching yield analysis for the different materials and correlated with solar cell performance from MAPbI(3) and MAPbI(3-x)Cl(x) in mesoporous TiO2 layers where inclusion of Cl improves crystal formation and is compared to alternative approaches using optimized solvents and anti-solvent methods. A band gap grading effect was found to be present for the scaffold MAPbI(3) and increased for MAPbI(3-x)Cl(x), beneficial for decreased hole concentration at the back contact and thus reducing back contact recombination.
  •  
28.
  • Park, Byung-Wook, et al. (författare)
  • Bismuth Based Hybrid Perovskites A(3)Bi(2)I(9) (A: Methylammonium or Cesium) for Solar Cell Application
  • 2015
  • Ingår i: Advanced Materials. - : Wiley. - 0935-9648 .- 1521-4095. ; 27:43, s. 6806-6813
  • Tidskriftsartikel (refereegranskat)abstract
    • Low-toxic bismuth-based perovskites are prepared for the possible replacement of lead perovskite in solar cells. The perovskites have a hexagonal crystalline phase and light absorption in the visible region. A power conversion efficiency of over 1% is obtained for a solar cell with Cs3Bi2I9 perovskite, and it is concluded that bismuth perovskites have very promising properties for further development in solar cells.
  •  
29.
  • Park, Byung-wook, et al. (författare)
  • Chemical engineering of methylammonium lead iodide/bromide perovskites : tuning of opto-electronic properties and photovoltaic performance
  • 2015
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 3:43, s. 21760-21771
  • Tidskriftsartikel (refereegranskat)abstract
    • Hybrid (organic-inorganic) lead trihalide perovskites have attracted much attention in recent years due to their exceptionally promising potential for application in solar cells. Here a controlled one-step method is presented where PbCl2 is combined with three equivalents methylammonium halide (MAX, with X = land/or Br) in polar solvents to form MAPb(I-xBr(x))(3) perovskite films upon annealing in air at 145 degrees C. The procedure allows for a linear increment of the semiconductor bandgap from 1.60 eV to 2.33 eV by increasing the Br content. A transition from a tetragonal to a cubic structure is found when the Br fraction is larger than 0.3. X-ray photoelectron spectroscopy investigations shows that the increase of Br content is accompanied by a shift of the valence band edge to lower energy. Simultaneously, the conduction band moves to higher energy, but this shift is less pronounced. Time-resolved single-photon counting experiments of the perovskite materials on mesoporous TiO2 show faster decay kinetics for Br containing perovskites, indicative of improved electron injection into TiO2. Interestingly, kinetics of MAPb(12.7)Br(0.30)Cl(y) on TiO2 scaffold became faster after prolonged excitation during the measurement. In solar cell devices, MAPb(12.7)Br(0.30)), yielded best performance, giving more than 14% power conversion efficiency when used in combination with an n-type contact consisting of fluorine-doped tinoxide glass coated with dense TiO2 and a mesoporous Al2O3 scaffold, and a p-type contact, spiro-MeOTAD/Ag.
  •  
30.
  • Park, Byung-wook, et al. (författare)
  • Resonance Raman and Excitation Energy Dependent Charge Transfer Mechanism in Halide-Substituted Hybrid Perovskite Solar Cells
  • 2015
  • Ingår i: ACS Nano. - : American Chemical Society (ACS). - 1936-0851 .- 1936-086X. ; 9:2, s. 2088-2101
  • Tidskriftsartikel (refereegranskat)abstract
    • Organo-metal halide perovskites (OMHPs) are materials with attractive properties for optoelectronics. They made a recent introduction in the photovoltaics world by methylammonium (MA) lead triiodide and show remarkably improved charge separation capabilities when chloride and bromide are added. Here we show how halide substitution in OMHPs with the nominal composition CH3NH3PbI2X, where X is I, Br, or Cl, influences the morphology, charge quantum yield, and local interaction with the organic MA cation. X-ray diffraction and photoluminescence data demonstrate that halide substitution affects the local structure in the OMHPs with separate MAPbI3 and MAPbCl(3) phases. Raman spectroscopies as well as theoretical vibration calculations reveal that this at the same time delocalizes the charge to the MA cation, which can liberate the vibrational movement of the MA cation, leading to a more adaptive organic phase. The resonance Raman effect together with quantum chemical calculations is utilized to analyze the change in charge transfer mechanism upon electronic excitation and gives important clues for the mechanism of the much improved photovoltage and photocurrent also seen in the solar cell performance for the materials when chloride compounds are included in the preparation.
  •  
31.
  • Sloboda, Tamara, et al. (författare)
  • A method for studying pico to microsecond time-resolved core-level spectroscopy used to investigate electron dynamics in quantum dots
  • 2020
  • Ingår i: Scientific Reports. - : Springer Nature. - 2045-2322. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Time-resolved photoelectron spectroscopy can give insights into carrier dynamics and offers the possibility of element and site-specific information through the measurements of core levels. In this paper, we demonstrate that this method can access electrons dynamics in PbS quantum dots over a wide time window spanning from pico- to microseconds in a single experiment carried out at the synchrotron facility BESSY II. The method is sensitive to small changes in core level positions. Fast measurements at low pump fluences are enabled by the use of a pump laser at a lower repetition frequency than the repetition frequency of the X-ray pulses used to probe the core level electrons: Through the use of a time-resolved spectrometer, time-dependent analysis of data from all synchrotron pulses is possible. Furthermore, by picosecond control of the pump laser arrival at the sample relative to the X-ray pulses, a time-resolution limited only by the length of the X-ray pulses is achieved. Using this method, we studied the charge dynamics in thin film samples of PbS quantum dots on n-type MgZnO substrates through time-resolved measurements of the Pb 5d core level. We found a time-resolved core level shift, which we could assign to electron injection and charge accumulation at the MgZnO/PbS quantum dots interface. This assignment was confirmed through the measurement of PbS films with different thicknesses. Our results therefore give insight into the magnitude of the photovoltage generated specifically at the MgZnO/PbS interface and into the timescale of charge transport and electron injection, as well as into the timescale of charge recombination at this interface. It is a unique feature of our method that the timescale of both these processes can be accessed in a single experiment and investigated for a specific interface.
  •  
32.
  • Song, Kai, et al. (författare)
  • An Impedance Decoupling-Based Tuning Scheme for Wireless Power Transfer System under Dual-Side Capacitance Drift
  • 2021
  • Ingår i: IEEE Transactions on Power Electronics. - 0885-8993 .- 1941-0107. ; 36:7, s. 7526-7536
  • Tidskriftsartikel (refereegranskat)abstract
    • High performance of a wireless power transfer system is related to the resonance. However, the capacitance drift caused by temperature variation leads to detuning. In this article, a tuning scheme against dual-side capacitance drift using the impedance decoupling algorithm is investigated. First, the impact of the capacitance drift on transmission efficiency and output power are analyzed. Second, it is difficult to compensate for the dual-side capacitance drift quickly since the primary and secondary sides are coupled. Therefore, the impedance decoupling algorithm is introduced. The primary and secondary reactances are decoupled from the total impedance. The two independent reactances are only determined by the capacitance drift of the corresponding side. Then, by adjusting system frequency and the phase-shift angle of the semiactive rectifier, the reactances of both sides can be eliminated, respectively. Compared with the existing tuning methods focusing on total input impedance, the continuous adjustment on two sides is avoided, so the tuning time is significantly reduced. The experimental results prove that the proposed method can improve the system efficiency by 5%-40% and reduce the tuning time by 67% under different capacitance drift.
  •  
33.
  • Song, Kai, et al. (författare)
  • Constant Current Charging and Maximum System Efficiency Tracking for Wireless Charging Systems Employing Dual-Side Control
  • 2020
  • Ingår i: IEEE Transactions on Industry Applications. - 0093-9994 .- 1939-9367. ; 56:1, s. 622-634
  • Tidskriftsartikel (refereegranskat)abstract
    • Wireless power transfer (WPT) systems have attracted much attention because of their safety, convenience, and environmental friendliness. For wireless supercapacitor charging, the system efficiency and charging current are highly dependent on the load that varies over a wide range. In this article, a simultaneous maximum system efficiency (MSE) tracking and constant current (CC) charging control scheme for a supercapacitor is proposed. For CC charging, a double-sided LCC topology is chosen due to its characteristic of providing a load-independent output current. Furthermore, the impact of the coil internal resistance on the system characteristics (especially the charging current) is investigated, so a semiactive rectifier is introduced on the secondary side to achieve accurate CC charging and improve the system robustness. Based on the variable-step perturbation and observation algorithm, the MSE is tracked by searching for the minimum system input dc current using a primary-side buck converter on the premise that the charging current reaches its target value. The abovementioned two control loops are independent, and mutual communication is unnecessary when they cooperate; thus, the system is simplified. The simulation and experimental results show great consistency with the theoretical analysis. The experimental system maintains the MSE of 86% during charging the supercapacitor from 20 to 50 V with 2 A.
  •  
34.
  • Sveinbjörnsson, Kári, et al. (författare)
  • Probing Photocurrent Generation, Charge Transport, and Recombination Mechanisms in Mesostructured Hybrid Perovskite through Photoconductivity Measurements
  • 2015
  • Ingår i: The Journal of Physical Chemistry Letters. - : American Chemical Society (ACS). - 1948-7185. ; 6:21, s. 4259-4264
  • Tidskriftsartikel (refereegranskat)abstract
    • Conductivity of methylammonium lead triiodide (MAPbI(3)) perovskite was measured on different mesoporous metal oxide scaffolds: TiO2, Al2O3, and ZrO2, as a function of incident light irradiation and temperature. It was found that MAPbI(3) exhibits intrinsic charge separation, and its conductivity stems from a majority of free charge carriers. The crystal morphology of the MAPbI(3) was found to significantly affect the photoconductivity, whereas in the dark the conductivity is governed by the perovskite in the pores of the mesoporous scaffold. The temperature-dependent conductivity measurements also indicate the presence of states within the band gap of the perovskite. Despite a relatively large amount of crystal defects in the measured material, the main recombination mechanism of the photogenerated charges is bimolecular (band-to-band), which suggests that the defect states are rather inactive in the recombination. This may explain the remarkable efficiencies obtained for perovskite solar cells prepared with wetchemical methods.
  •  
35.
  • Wang, Juncheng, et al. (författare)
  • Preparation and in vitro evaluation of strontium-doped calcium silicate/gypsum bioactive bone cement
  • 2014
  • Ingår i: Biomedical Materials. - : IOP Publishing. - 1748-6041 .- 1748-605X. ; 9:4, s. 045002-
  • Tidskriftsartikel (refereegranskat)abstract
    • The combination of two or more bioactive components with different biodegradability could cooperatively improve the physicochemical and biological performances of the biomaterials. Here we explore the use of alpha-calcium sulfate hemihydrate (alpha-CSH) and calcium silicate with and without strontium doping (Sr-CSi, CSi) to fabricate new bioactive cements with appropriate biodegradability as bone implants. The cements were fabricated by adding different amounts (0-35 wt%) of Sr-CSi (or CSi) into the alpha-CSH-based pastes at a liquid-to-solid ratio of 0.4. The addition of Sr-CSi into alpha-CSH cements not only led to a pH rise in the immersion medium, but also changed the surface reactivity of cements, making them more bioactive and therefore promoting apatite mineralization in simulated body fluid (SBF). The impact of additives on long-term in vitro degradation was evaluated by soaking the cements in Tris buffer, SBF, and alpha-minimal essential medium (alpha-MEM) for a period of five weeks. An addition of 20% Sr-CSi to alpha-CSH cement retarded the weight loss of the samples to 36% (in Tris buffer), 43% (in SBF) and 54% (in alpha-MEM) as compared with the pure alpha-CSH cement. However, the addition of CSi resulted in a slightly faster degradation in comparison with Sr-CSi in these media. Finally, the in vitro cell-ion dissolution products interaction study using human fetal osteoblast cells demonstrated that the addition of Sr-CSi improved cell viability and proliferation. These results indicate that tailorable bioactivity and biodegradation behavior can be achieved in gypsum cement by adding Sr-CSi, and such biocements will be of benefit for enhancing bone defect repair.
  •  
36.
  • Wang, Zhaohui, et al. (författare)
  • Lightweight, Thin, and Flexible Silver Nanopaper Electrodes for High-Capacity Dendrite-Free Sodium Metal Anodes
  • 2018
  • Ingår i: Advanced Functional Materials. - : Wiley-Blackwell. - 1616-301X .- 1616-3028. ; 28:48
  • Tidskriftsartikel (refereegranskat)abstract
    • Owing to its resource-abundant and favorable theoretical capacity, sodium metal is regarded as a promising anode material for sodium metal batteries. However, uncontrolled Na plating/stripping, including Na dendrite growth during cycling, has hindered its practical application. Herein, a sodiophilic, thin, and flexible silver nanopaper (AgNP) is designed based on interpenetrated nanocellulose and silver nanowires and is used as a dendrite-free Na metal electrode. Due to a network of highly conducting silver nanowire (0.6 Ω sq?1, 8200 S cm?1), the sodiophilic nature of silver, and the reduced internal strain within the flexible AgNP, a compact Na metal layer can be uniformly deposited on and reversibly stripped from the AgNP electrode without any observations of Na dendrites during cycling at 1 mA cm?2 for 800 h. As the AgNP electrode is only 2 µm thick, with a low mass loading of 0.88 mg cm?2, the AgNP?Na anode deposited with a Na deposition charge of 6 mAh cm?2 exhibits a capacity of 995 mAh g?1AgNP?Na, approaching that of a Na metal anode (1166 mAh g?1Na). The present approach provides new possibilities for the development of lightweight and stable metal batteries.
  •  
37.
  • Yuan, Lin, et al. (författare)
  • Four-Terminal Tandem Solar Cell with Dye-Sensitized and PbS Colloidal Quantum-Dot-Based Subcells
  • 2020
  • Ingår i: ACS Applied Energy Materials. - : AMER CHEMICAL SOC. - 2574-0962. ; 3:4, s. 3157-3161
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, high-performance four-terminal solution-processed tandem solar cells were fabricated by using dye-sensitized solar cells (DSSCs) as top-cells and lead sulfide (PbS) colloidal quantum dot solar cells (CQDSCs) as bottom-cells. For dye-sensitized top-cells, three different dye combinations were used while the titanium dioxide (TiO2) scattering layer was removed to maximize the transmission. For the PbS bottom-cells, quantum dots with different sizes were compared. Over 12% power conversion efficiency has been achieved by using the XL dye mixture and 890 nm PbS QDs, which shows a significant efficiency enhancement when compared to single DSSC or CQDSC subcells.
  •  
38.
  • Zhang, Guiling, et al. (författare)
  • Understanding the influence of alendronate on the morphology and phase transformation of apatitic precursor nanocrystals
  • 2012
  • Ingår i: Journal of Inorganic Biochemistry. - : Elsevier BV. - 0162-0134 .- 1873-3344. ; 113, s. 1-8
  • Tidskriftsartikel (refereegranskat)abstract
    • Bisphosphonates (BPs) are a class of synthetic pyrophosphate analogs that can prevent the loss of bone mass, given orally to treat postmenopuasal osteoporosis. It is not clear yet if the benefits of BPs include the possibility of affecting bone apatitic precursors transition for bone consolidation except for encouraging osteoclasts to undergo apoptosis. Furthermore, the complexity of the in vivo system makes it difficult to isolate and study such extracellular topographical cues that trigger bone turnover response. Herein, we proposed a wet-chemical approach employing alendronate sodium (AS) as a guide of hydroxyapatite (HA) precursor growth and conversion which was initiated from the nucleantion of octacalcium phosphate (OCP) in a cell membrane-mimicking surfactant micelle aqueous system. The nanocrystal clusters of dicalcium phosphate dihydrate (DCPD) and OCP nanocryatals were readily precipitated within a relatively narrow AS concentration range (2-8 mu M). However, such low concentrations of AS seemed to stabilize the more acidic phases, and to delay the transformation into HA, to an extent which increased on increasing AS concentration. In contrast, at a slight higher concentrations (16-32 mu M), AS promoted HA precipitation after ageing for 1 h. It was found that the effect of AS on the phase selectivity of apatitic precursors was concentration-dependent within a prolonged ageing time stage (0.5-168 h). The AS-assisted reactions in vitro offer an expedient way to understand the underlying implementarity between bone and BPs for bone consolidation, and to improve our understanding of benefit of BP dosages on bone turnover and trauma healing.
  •  
39.
  • Zhang, Tong, et al. (författare)
  • Link speed prediction for signalized urban traffic network using a hybrid deep learning approach
  • 2019
  • Konferensbidrag (refereegranskat)abstract
    • Predicting traffic speed is of importance in transportation management. Signalized road networks manifest highly dynamic speed patterns that are challenging to model and predict. We propose a hybrid deep-learning-based approach for link speed prediction, aiming at capturing heterogeneous spatiotemporal correlations between road intersections. After transforming original road networks and intersections into graphs, this approach leverages a layered graph convolution network structure to model traffic speed variations at both intersection and road network levels. The two levels are combined through a fully connected neural layer. Neural spatiotemporal attention mechanisms are applied to modulate the most relevant periodical traffic information during signal cycles. The proposed approach was evaluated using real-world speed data collected in Hangzhou City, China. Experiments demonstrate that the proposed approach can offer a scalable and effective solution for predicting short-term speed for signalized road networks.
  •  
40.
  • Zhang, Wei, et al. (författare)
  • Coordination for heavy-duty vehicle platoon formation considering travel time variance
  • 2015
  • Konferensbidrag (refereegranskat)abstract
    • Forming a platoon has the potential to reduce the overall drag, providing economic and ecological benefitssuch as reduced energy consumption, increased safety and a more efficient utilization of roadinfrastructure. Previous research on platoon coordination has mainly focused on local control of platoonformation at highway on‐ramps and off‐ramps, or large‐network coordination strategy based on real‐timevehicle‐to‐vehicle communication. The platoon scheduling problem, however, has been barely explored.This study investigates the optimization of platoon scheduling problem, which is defined as theminimization of the total cost of all vehicles, including travel cost, early or late penalty and fuelconsumption. The travel cost is modelled as driver wage of certain travel time, which is comprised ofrecurrent travel time and non‐recurrent delay. Non‐recurrent delay is a random variable independent ofdeparture time. If the actual arrival time is earlier than the preferred arrival time, an early penalty isincurred. Otherwise a late penalty, which has a greater weight coefficient than early penalty, is incurred.Fuel consumption is a nonlinear function of travel time and platooning state. All vehicles in the platoonexcept the leader will experience an air‐drag reduction. The fuel cost caused by air drag only composes partof the total fuel consumption, from the perspective of energy conservation. For this nonlinear stochasticprogramming problem, a solution is proposed for the platoon‐or‐not‐platoon dilemma. Moreover, theoptimal departure time of the platoon is given when it is more beneficial to form a platoon than drivingindividually. Several numerical examples are presented to study the influences of different unit costparameters, together with various assumptions of the distribution of non‐recurrent delay, on the optimaldeparture time. The model enables the operator to predict the expected cost of platooning and scheduleadjustment and make a reasonable decision.
  •  
41.
  • Zhang, Wei, et al. (författare)
  • Freight transport platoon coordination and departure time scheduling under travel time uncertainty
  • 2017
  • Ingår i: Transportation Research Part E. - : Elsevier. - 1366-5545 .- 1878-5794. ; 98, s. 1-23
  • Tidskriftsartikel (refereegranskat)abstract
    • The paper formulates and analyzes a freight transport platoon coordination and departure time scheduling problem under travel time uncertainty. The expected cost minimization framework accounts for travel time cost, schedule miss penalties and fuel cost. It is shown that platooning is beneficial only when scheduled arrival times differ less than a certain threshold. Travel time uncertainty typically reduces the threshold schedule difference for platooning to be beneficial. Platooning in networks is less beneficial on converging routes than diverging routes, due to delay at the merging point. The model provides valuable insights regarding platooning benefits for freight transport planning.
  •  
42.
  •  
43.
  • Zhang, Xiaoliang, et al. (författare)
  • Dry-Deposited Transparent Carbon Nanotube Film as Front Electrode in Colloidal Quantum Dot Solar Cells
  • 2017
  • Ingår i: ChemSusChem. - : WILEY-V C H VERLAG GMBH. - 1864-5631 .- 1864-564X. ; 10:2, s. 434-441
  • Tidskriftsartikel (refereegranskat)abstract
    • Single-walled carbon nanotubes (SWCNTs) show great potential as an alternative material for front electrodes in photovoltaic applications, especially for flexible devices. In this work, a press-transferred transparent SWCNT film was utilized as front electrode for colloidal quantum dot solar cells (CQDSCs). The solar cells were fabricated on both glass and flexible substrates, and maximum power conversion efficiencies of 5.5 and 5.6 %, respectively, were achieved, which corresponds to 90 and 92% of an indium-doped tin oxide (ITO)-based device (6.1 %). The SWCNTs are therefore a very good alternative to the ITO-based electrodes especially for flexible solar cells. The optical electric field distribution and optical losses within the devices were simulated theoretically and the results agree with the experimental results. With the optical simulations that were performed it may also be possible to enhance the photovoltaic performance of SWCNT-based solar cells even further by optimizing the device configuration or by using additional optical active layers, thus reducing light reflection of the device and increasing light absorption in the quantum dot layer.
  •  
44.
  • Zhang, Xiaoliang, et al. (författare)
  • Efficient charge-carrier extraction from Ag2Squantum dots prepared by the SILAR method for utilization of multiple exciton generation
  • 2015
  • Ingår i: Nanoscale. - 2040-3364 .- 2040-3372. ; 7:4, s. 1454-1462
  • Tidskriftsartikel (refereegranskat)abstract
    • The utilization of electron–hole pairs (EHPs) generated from multiple excitons in quantum dots (QDs) is of great interest toward efficient photovoltaic devices and other optoelectronic devices; however, extraction of charge carriers remains difficult. Herein, we extract photocharges from Ag2S QDs and investigate the dependence of the electric field on the extraction of charges from multiple exciton generation (MEG). Low toxic Ag2S QDs are directly grown on TiO2 mesoporous substrates by employing the successive ionic layer adsorption and reaction (SILAR) method. The contact between QDs is important for the initial charge separation after MEG and for the carrier transport, and the space between neighbor QDs decreases with more SILAR cycles, resulting in better charge extraction. At the optimal electric field for extraction of photocharges, the results suggest that the threshold energy (hνth) for MEG is 2.41Eg. The results reveal that Ag2S QD is a promising material for efficient extraction of charges from MEG and that QDs prepared by SILAR have an advantageous electrical contact facilitating charge separation and extraction.
  •  
45.
  • Zhang, Xiaoliang, et al. (författare)
  • Electro-Optics of Colloidal Quantum Dot Solids for Thin-FilmSolar Cells
  • 2016
  • Ingår i: Advanced Functional Materials. - : Wiley. - 1616-301X .- 1616-3028. ; 26:8, s. 1253-1260
  • Forskningsöversikt (refereegranskat)abstract
    • The electro-optics of thin-fi lm stacks within photovoltaic devices playsa critical role for the exciton and charge generation and therefore thephotovoltaic performance. The complex refractive indexes of each layer inheterojunction colloidal quantum dot (CQD) solar cells are measured andthe optical electric fi eld is simulated using the transfer matrix formalism.The exciton generation rate and the photocurrent density as a function ofthe quantum dot solid thickness are calculated and the results from thesimulations are found to agree well with the experimentally determinedresults. It can therefore be concluded that a quantum dot solid may bemodeled with this approach, which is of general interest for this type ofmaterials. Optimization of the CQD solar cell is performed by using theoptical simulations and a maximum solar energy conversion effi ciency of6.5% is reached for a CQD solid thickness of 300 nm.
  •  
46.
  • Zhang, Xiaoliang, et al. (författare)
  • Enhanced charge carrier extraction by a highly ordered wrinkled MgZnO thin film for colloidal quantum dot solar cells
  • 2017
  • Ingår i: Journal of Materials Chemistry C. - 2050-7526 .- 2050-7534. ; 5:42, s. 11111-11120
  • Tidskriftsartikel (refereegranskat)abstract
    • Efficient charge carrier extraction from a colloidal quantum dot (CQD) solid is crucial for highperformance of CQD solar cells (CQDSCs). Herein, highly ordered wrinkled MgZnO (MZO) thin films aredemonstrated to improve the charge carrier extraction of PbS CQDSCs. The highly ordered wrinkledMZO thin films are prepared using a low-temperature combustion method. The photovoltaicperformances of CQDSCs with a combustion-processed MZO (CP-MZO) thin film as an electrontransport material (ETM) are compared to those of CQDSCs with a conventional sol–gel processed MZO(SGP-MZO) thin film as an ETM. We performed photoluminescence quenching measurements of thecolloidal quantum dot (CQD) solid and charge carrier dynamic analysis of full solar cell devices. Theresults show that the highly ordered wrinkled CP-MZO thin film significantly increases the chargecarrier extraction from the CQD solid and therefore diminishes the charge interfacial recombination atthe CQD/ETM junction, leading to a 15.5% increase in power conversion efficiency. The improvedefficiency in the CP-MZO based CQDSC is also attributed to the compact and pin-hole free CP-MZOthin film.
  •  
47.
  • Zhang, Xiaoliang, et al. (författare)
  • Extremely lightweight and ultra-flexible infrared light-converting quantum dot solar cells with high power-per-weight output using a solution-processed bending durable silver nanowire-based electrode
  • 2018
  • Ingår i: Energy & Environmental Science. - : ROYAL SOC CHEMISTRY. - 1754-5692 .- 1754-5706. ; 11:2, s. 354-364
  • Tidskriftsartikel (refereegranskat)abstract
    • Lightweight and flexible solar cells are highly interesting materials for use in new applications, such as spacecraft, aircraft and personal pack load. PbS colloidal quantum dots (CQDs) exhibit a broad and strong light absorption spectrum covering the ultraviolet-visible-near infrared region, allowing for incorporation of very thin CQD films into solar cells with high power conversion efficiency (PCE) from solar light to electricity. Herein, we report an extremely lightweight and ultra-flexible CQD solar cell constructed on a polyethylene naphthalate substrate with a thickness of 1.3 mu m. A solution-processed Ag nanowire network with excellent mechanical, optical and electrical properties was prepared as the front-electrode in the solar cell. The thickness of the complete CQD solar cell is less than 2 mm, and similar to 10% PCE with a weight of 6.5 g m(-2) is achieved, resulting in a power-per-weight output of 15.2 W g(-1). The flexible solar cell possesses durable mechanical properties and maintains high-level photovoltaic performance under extreme deformation and after repeated compression-stretching deformation. Moreover, the flexible CQD solar cell shows impressive stability both under continuous illumination and after storage under ambient conditions. These results reveal that solution-processed CQDs are compatible with an ultra-flexible substrate for the construction of ultra-lightweight infrared light-converting CQD solar cells with possibilities for new exciting solar energy applications.
  •  
48.
  • Zhang, Xiaoliang, et al. (författare)
  • Fine Tuned Nanolayered Metal/Metal Oxide Electrode for Semitransparent Colloidal Quantum Dot Solar Cells
  • 2016
  • Ingår i: Advanced Functional Materials. - : Wiley. - 1616-301X .- 1616-3028. ; 26:12, s. 1921-1929
  • Tidskriftsartikel (refereegranskat)abstract
    • Semitransparent photovoltaics have great potential, for example, in buildingintegrationor in portable electronics. However, the front and back contactelectrodes signifi cantly affect the light transmission and photovoltaic performanceof the complete device. Herein, the use of a semitransparentnanolayered metal/metal oxide electrode for a semitransparent PbS colloidalquantum dot solar cell to increase the light transmission and power conversioneffi ciency is reported. The effect of the nanolayered electrode on theoptical properties within the solar cells is studied and compared to a theoreticallymodel to identify the origin of optical losses that lower the devicetransmission. The results show that the light transmission in the visibleregion and the photovoltaic performance are signifi cantly enhanced with thenanolayered electrode. The solar cell shows an effi ciency of 5.4% and averagevisible transmittance of 24.1%, which is an increase by 28.6% and 59.6%,respectively, compared to the device with a standard Au fi lm as the electrode.These results demonstrate that the optical and electrical modifi cation oftransparent electrode is possible and essential for reducing the light refl ectionand absorption of the electrode in semitransparent photovoltaics, and,meanwhile the demonstrated nanolayered materials may provide an avenuefor enhancing the device transparency and efficiency.
  •  
49.
  • Zhang, Xiaoliang, et al. (författare)
  • FTO-free top-illuminated colloidal quantum dot electro-optics in devices
  • 2017
  • Ingår i: Solar Energy. - : Elsevier BV. - 0038-092X .- 1471-1257. ; 158, s. 533-542
  • Tidskriftsartikel (refereegranskat)abstract
    • A solar cell device architecture with top-illumination, where the light does not pass through the substrate, is advantageous for many applications. It is also specifically useful for the construction of tandem or multiple junction photovoltaic devices, with illumination through the top solar cell. Here, a top-illuminated colloidal quantum dot solar cell (TI-CQDSC) is demonstrated and compared with a conventional colloidal quantum dot solar cell (C-CQDSC) constructed on a FTO (fluorine doped tin oxide) glass substrate both theoretically and experimentally. The optical electric field distribution in the solar cells with different configuration is simulated using transfer matrix formalism and a more intense optical electric field was observed in TI-CQDSC, leading to a higher exciton generation rate within the colloidal quantum dot solid. The TI-CQDSCs are constructed on both nonconductive glass and flexible substrates, and a maximum power conversion efficiency of 6.4% and 5.6% is achieved, respectively, comparing to that of 5.9% for the C-CQDSC. The improved performance of the top illuminated solar cell is attributed to a combination of enhanced optical electric field intensity in the colloidal quantum dot solid and superior conductivity of the transparent metal film electrode.
  •  
50.
  • Zhang, Xiaoliang, et al. (författare)
  • Highly Efficient Flexible Quantum Dot Solar Cells with Improved Electron Extraction Using MgZnO Nanocrystals
  • 2017
  • Ingår i: ACS Nano. - : American Chemical Society (ACS). - 1936-0851 .- 1936-086X. ; 11:8, s. 8478-8487
  • Tidskriftsartikel (refereegranskat)abstract
    • Colloidal quantum dot (CQD) solar cells have high potential for realizing an efficient and lightweight energy supply for flexible or wearable electronic devices. To achieve highly efficient and flexible CQD solar cells, the electron transport layer (ETL), extracting electrons from the CQD solid layer, needs to be processed at a low-temperature and should also suppress interfacial recombination. Herein, a highly stable MgZnO nanocrystal (MZO-NC) layer is reported for efficient flexible PbS CQD solar cells. Solar cells fabricated with MZONC ETL give a high power conversion efficiency (PCE) of 10.4% and 9.4%, on glass and flexible plastic substrates, respectively. The reported flexible CQD solar cell has the record efficiency to date of flexible CQD solar cells. Detailed theoretical simulations and extensive characterizations reveal that the MZO-NCs significantly enhance charge extraction from CQD solids and diminish the charge accumulation at the ETL/CQD interface, suppressing charge interfacial recombination. These important results suggest that the low-temperature processed MZO-NCs are very promising for use in efficient flexible solar cells or other flexible optoelectronic devices.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 65
Typ av publikation
tidskriftsartikel (52)
konferensbidrag (7)
forskningsöversikt (5)
bokkapitel (1)
Typ av innehåll
refereegranskat (64)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Zhang, Xiaoliang (40)
Johansson, Erik M. J ... (23)
Liu, Jianhua (14)
Johansson, Erik (9)
Johansson, Malin B., ... (9)
Jia, Donglin (9)
visa fler...
Boschloo, Gerrit (8)
Rensmo, Håkan (7)
Hagfeldt, Anders (7)
Tian, Lei (6)
Sveinbjörnsson, Kári (5)
Chen, Jingxuan (5)
Ma, Xiaoliang, Docen ... (5)
Andruszkiewicz, Anet ... (4)
Zhang, Ye, 1984- (4)
Park, Byung-Wook (4)
Huang, Xiaoliang, 19 ... (4)
Du, Juan (4)
Cheng, Xiaoliang (4)
Ma, Xiaoliang (4)
Zhang, Wei (3)
Aitola, Kerttu (3)
Cappel, Ute B. (3)
Gulliksson, Mårten, ... (3)
Zheng, Siyu (3)
Yu, Mei (3)
Gong, Rongfang (3)
Johansson, Fredrik (2)
Yang, Guang (2)
Zhang, Hong, 1957- (2)
Lindblad, Andreas (2)
Zhang, Jinbao (2)
Vlachopoulos, Nick (2)
Karis, Olof (2)
Yuan, Lin (2)
Giangrisostomi, Erik ... (2)
Ovsyannikov, Ruslan (2)
Edvinsson, Tomas (2)
Chen, Jian (2)
Engardt, Magnuz (2)
Hägglund, Carl, 1975 ... (2)
Jenelius, Erik (2)
Xia, Wei (2)
Zhang, Zhiguo (2)
Philippe, Bertrand (2)
Svanström, Sebastian (2)
Phuyal, Dibya (2)
Lin, Guangliang (2)
Zhong, Lin (2)
Zhang, Hang (2)
visa färre...
Lärosäte
Uppsala universitet (41)
Kungliga Tekniska Högskolan (14)
Örebro universitet (6)
Chalmers tekniska högskola (5)
Stockholms universitet (2)
Umeå universitet (1)
visa fler...
Linköpings universitet (1)
visa färre...
Språk
Engelska (65)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (50)
Teknik (21)
Medicin och hälsovetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy