SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zheng XW) "

Sökning: WFRF:(Zheng XW)

  • Resultat 1-45 av 45
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  • Ekberg, NR, et al. (författare)
  • Protective Effect of the HIF-1A Pro582Ser Polymorphism on Severe Diabetic Retinopathy
  • 2019
  • Ingår i: Journal of diabetes research. - : Hindawi Limited. - 2314-6753 .- 2314-6745. ; 2019, s. 2936962-
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective. Hypoxia is central in the pathogenesis of diabetic retinopathy (DR). Hypoxia-inducible factor-1 (HIF-1) is the key mediator in cellular oxygen homeostasis that facilitates the adaptation to hypoxia. HIF-1 is repressed by hyperglycemia contributing by this to the development of complications in diabetes. Recent work has shown that the HIF-1A Pro582Ser polymorphism is more resistant to hyperglycemia-mediated repression, thus protecting against the development of diabetic nephropathy. In this study, we have investigated the effect of the HIF-1A Pro582Ser polymorphism on the development of DR and further dissected the mechanisms by which the polymorphism confers a relative resistance to the repressive effect of hyperglycemia. Research Design and Method. 703 patients with type 1 diabetes mellitus from one endocrine department were included in the study. The degree of retinopathy was correlated to the HIF-1A Pro582Ser polymorphism. The effect of glucose on a stable HIF-1A construct with a Pro582Ser mutation was evaluated in vitro. Results. We identified a protective effect of HIF-1A Pro582Ser against developing severe DR with a risk reduction of 95%, even when adjusting for known risk factors for DR such as diabetes duration, hyperglycemia, and hypertension. The Pro582Ser mutation does not cancel the destabilizing effect of glucose but is followed by an increased transactivation activity even in high glucose concentrations. Conclusion. The HIF-1A genetic polymorphism has a protective effect on the development of severe DR. Moreover, the relative resistance of the HIF-1A Pro582Ser polymorphism to the repressive effect of hyperglycemia is due to the transactivation activity rather than the protein stability of HIF-1α.
  •  
18.
  •  
19.
  • Huang, HP, et al. (författare)
  • Long latency of evoked quantal transmitter release from somata of locus coeruleus neurons in rat pontine slices
  • 2007
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424. ; 104:4, s. 1401-1406
  • Tidskriftsartikel (refereegranskat)abstract
    • The locus coeruleus (LC) harbors a compact group of noradrenergic cell bodies projecting to virtually all parts of the central nervous system. By using combined measurements of amperometry and patch-clamp, quantal vesicle release of noradrenaline (NA) was detected as amperometric spikes, after depolarization of the LC neurons. After a pulse depolarization, the average latency of amperometric spikes was 1,870 ms, whereas the latency of glutamate-mediated excitatory postsynaptic currents was 1.6 ms. A substantial fraction of the depolarization-induced amperometric spikes originated from the somata. In contrast to glutamate-mediated excitatory postsynaptic currents, NA secretion was strongly modulated by the action potential frequency (0.5–50 Hz). Somatodendritic NA release from LC upon enhanced cell activity produced autoinhibition of firing and of NA release. We conclude that, in contrast to classic synaptic transmission, quantal NA release from LC somata is characterized by a number of distinct properties, including long latency and high sensitivity to action potential frequency.
  •  
20.
  •  
21.
  • Kjellberg, A, et al. (författare)
  • Hyperbaric oxygen for treatment of long COVID-19 syndrome (HOT-LoCO): protocol for a randomised, placebo-controlled, double-blind, phase II clinical trial
  • 2022
  • Ingår i: BMJ open. - : BMJ. - 2044-6055. ; 12:11, s. e061870-
  • Tidskriftsartikel (refereegranskat)abstract
    • Long COVID-19, where symptoms persist 12 weeks after the initial SARS-CoV-2-infection, is a substantial problem for individuals and society in the surge of the pandemic. Common symptoms are fatigue, postexertional malaise and cognitive dysfunction. There is currently no effective treatment and the underlying mechanisms are unknown, although several hypotheses exist, with chronic inflammation as a common denominator. In prospective studies, hyperbaric oxygen therapy (HBOT) has been suggested to be effective for the treatment of similar syndromes such as chronic fatigue syndrome and fibromyalgia. A case series has suggested positive effects of HBOT in long COVID-19. This randomised, placebo-controlled clinical trial will explore HBOT as a potential treatment for long COVID-19. The primary objective is to evaluate if HBOT improves health-related quality of life (HRQoL) for patients with long COVID-19 compared with placebo/sham. The main secondary objective is to evaluate whether HBOT improves endothelial function, objective physical performance and short-term HRQoL.Methods and analysisA randomised, placebo-controlled, double-blind, phase II clinical trial in 80 previously healthy subjects debilitated due to long COVID-19, with low HRQoL. Clinical data, HRQoL questionnaires, blood samples, objective tests and activity metre data will be collected at baseline. Subjects will be randomised to a maximum of 10 treatments with hyperbaric oxygen or sham treatment over 6 weeks. Assessments for safety and efficacy will be performed at 6, 13, 26 and 52 weeks, with the primary endpoint (physical domains in RAND 36-Item Health Survey) and main secondary endpoints defined at 13 weeks after baseline. Data will be reviewed by an independent data safety monitoring board.Ethics and disseminationThe trial is approved by the Swedish National Institutional Review Board (2021–02634) and the Swedish Medical Products Agency (5.1-2020-36673). Positive, negative and inconclusive results will be published in peer-reviewed scientific journals with open access.Trial registration numberNCT04842448.
  •  
22.
  • Narayanan, S, et al. (författare)
  • HypoxamiR-210 accelerates wound healing in diabetic mice by improving cellular metabolism
  • 2020
  • Ingår i: Communications biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1, s. 768-
  • Tidskriftsartikel (refereegranskat)abstract
    • Wound healing is a high energy demanding process that needs a good coordination of the mitochondria with glycolysis in the characteristic highly hypoxic environment. In diabetes, hyperglycemia impairs the adaptive responses to hypoxia with profound negative effects on different cellular compartments of wound healing. miR-210 is a hypoxia-induced microRNA that regulates cellular metabolism and processes important for wound healing. Here, we show that hyperglycemia blunted the hypoxia-dependent induction of miR-210 both in vitro and in human and mouse diabetic wounds. The impaired regulation of miR-210 in diabetic wounds is pathogenic, since local miR-210 administration accelerated wound healing specifically in diabetic but not in non-diabetic mice. miR-210 reconstitution restores the metabolic balance in diabetic wounds by reducing oxygen consumption rate and ROS production and by activating glycolysis with positive consequences on cellular migration. In conclusion, miR-210 accelerates wound healing specifically in diabetes through improvement of the cellular metabolism.
  •  
23.
  •  
24.
  •  
25.
  •  
26.
  •  
27.
  •  
28.
  •  
29.
  •  
30.
  •  
31.
  • Taddei, C, et al. (författare)
  • Repositioning of the global epicentre of non-optimal cholesterol
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 582:7810, s. 73-
  • Tidskriftsartikel (refereegranskat)abstract
    • High blood cholesterol is typically considered a feature of wealthy western countries1,2. However, dietary and behavioural determinants of blood cholesterol are changing rapidly throughout the world3 and countries are using lipid-lowering medications at varying rates. These changes can have distinct effects on the levels of high-density lipoprotein (HDL) cholesterol and non-HDL cholesterol, which have different effects on human health4,5. However, the trends of HDL and non-HDL cholesterol levels over time have not been previously reported in a global analysis. Here we pooled 1,127 population-based studies that measured blood lipids in 102.6 million individuals aged 18 years and older to estimate trends from 1980 to 2018 in mean total, non-HDL and HDL cholesterol levels for 200 countries. Globally, there was little change in total or non-HDL cholesterol from 1980 to 2018. This was a net effect of increases in low- and middle-income countries, especially in east and southeast Asia, and decreases in high-income western countries, especially those in northwestern Europe, and in central and eastern Europe. As a result, countries with the highest level of non-HDL cholesterol—which is a marker of cardiovascular risk—changed from those in western Europe such as Belgium, Finland, Greenland, Iceland, Norway, Sweden, Switzerland and Malta in 1980 to those in Asia and the Pacific, such as Tokelau, Malaysia, The Philippines and Thailand. In 2017, high non-HDL cholesterol was responsible for an estimated 3.9 million (95% credible interval 3.7 million–4.2 million) worldwide deaths, half of which occurred in east, southeast and south Asia. The global repositioning of lipid-related risk, with non-optimal cholesterol shifting from a distinct feature of high-income countries in northwestern Europe, north America and Australasia to one that affects countries in east and southeast Asia and Oceania should motivate the use of population-based policies and personal interventions to improve nutrition and enhance access to treatment throughout the world.
  •  
32.
  •  
33.
  •  
34.
  •  
35.
  •  
36.
  •  
37.
  •  
38.
  •  
39.
  • Zheng, XW, et al. (författare)
  • Hypoxia-induced and calpain-dependent cleavage of filamin A regulates the hypoxic response
  • 2014
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 1091-6490. ; 111:7, s. 2560-2565
  • Tidskriftsartikel (refereegranskat)abstract
    • The cellular response to hypoxia is regulated by hypoxia-inducible factor-1α and -2α (HIF-1α and -2α). We have discovered that filamin A (FLNA), a large cytoskeletal actin-binding protein, physically interacts with HIF-1α (but not with HIF-2α) and promotes tumor growth and angiogenesis. Hypoxia induces a calpain-dependent cleavage of FLNA to generate a fragment that enhances nuclear accumulation of HIF-1α and is corecruited to HIF-1α target promoters, resulting in enhanced gene expression. This mechanism helps to explain why FLNA is upregulated in certain tumors and offers opportunities in targeting the hypoxia signaling pathway therapeutically.
  •  
40.
  •  
41.
  • Zheng, XW, et al. (författare)
  • Triggering of a Dll4-Notch1 loop impairs wound healing in diabetes
  • 2019
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 1091-6490. ; 116:14, s. 6985-6994
  • Tidskriftsartikel (refereegranskat)abstract
    • Diabetic foot ulcerations (DFUs) represent a major medical and economic problem with still-unclear pathogenic mechanisms. The Notch pathway plays a pivotal role in cell differentiation, proliferation, and angiogenesis, processes that are profoundly disturbed in diabetic wounds. Notch signalling is activated upon interactions between membrane-bound Notch receptors (Notch 1–4) and ligands (Jagged 1–2 and Delta-like 1, 3, 4). Here, we report that a specific positive Delta-like 4–Notch1 feedback loop is activated by high glucose levels and specifically impairs wound healing in diabetes. Local inhibition of Notch signalling in experimental wounds using chemical and genetic approaches markedly improves healing exclusively in diabetic, but not in nondiabetic, animals, making Notch1 signalling an attractive locally therapeutic target for the treatment of DFUs.
  •  
42.
  •  
43.
  •  
44.
  • Zhou, ZC, et al. (författare)
  • Downregulation of Erythrocyte miR-210 Induces Endothelial Dysfunction in Type 2 Diabetes
  • 2022
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 71:2, s. 285-297
  • Tidskriftsartikel (refereegranskat)abstract
    • Red blood cells (RBC) act as mediators of vascular injury in type 2 diabetes mellitus (T2DM). miR-210 plays a protective role in cardiovascular homeostasis and is decreased in whole blood of T2DM mice. We hypothesized that downregulation of RBC miR-210 induces endothelial dysfunction in T2DM. RBC were coincubated with arteries and endothelial cells ex vivo and transfused in vivo to identify the role of miR-210 and its target protein tyrosine phosphatase 1B (PTP1B) in endothelial dysfunction. RBC from patients with T2DM and diabetic rodents induced endothelial dysfunction ex vivo and in vivo. miR-210 levels were lower in human RBC from patients with T2DM (T2DM RBC) than in RBC from healthy subjects. Transfection of miR-210 in human T2DM RBC rescued endothelial function, whereas miR-210 inhibition in healthy subjects RBC or RBC from miR-210 knockout mice impaired endothelial function. Human T2DM RBC decreased miR-210 expression in endothelial cells. miR-210 expression in carotid artery plaques was lower in T2DM patients than in patients without diabetes. Endothelial dysfunction induced by downregulated RBC miR-210 involved PTP1B and reactive oxygen species. miR-210 mimic attenuated endothelial dysfunction induced by RBC via downregulating vascular PTP1B and oxidative stress in diabetic mice in vivo. These data reveal that the downregulation of RBC miR-210 is a novel mechanism driving the development of endothelial dysfunction in T2DM.
  •  
45.
  • Thomas, HS, et al. (författare)
  • 2019
  • swepub:Mat__t
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-45 av 45

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy