SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhong Mao Jun) "

Sökning: WFRF:(Zhong Mao Jun)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Klionsky, Daniel J., et al. (författare)
  • Guidelines for the use and interpretation of assays for monitoring autophagy
  • 2012
  • Ingår i: Autophagy. - : Informa UK Limited. - 1554-8635 .- 1554-8627. ; 8:4, s. 445-544
  • Forskningsöversikt (refereegranskat)abstract
    • In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
  •  
3.
  • 2019
  • Tidskriftsartikel (refereegranskat)
  •  
4.
  • Beal, Jacob, et al. (författare)
  • Robust estimation of bacterial cell count from optical density
  • 2020
  • Ingår i: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data.
  •  
5.
  • Huang, Chun Hua, et al. (författare)
  • Investigating the role of body size, ecology, and behavior in anuran eye size evolution
  • 2019
  • Ingår i: Evolutionary Ecology. - : Springer Science and Business Media LLC. - 0269-7653 .- 1573-8477. ; 33:4, s. 585-598
  • Tidskriftsartikel (refereegranskat)abstract
    • Vertebrate eye size typically scales hypoallemetrically with body size-as animals grow larger their eyes get relatively smaller. Additionally, eye size is highly variable across species, and such variability often reflects functional adaptations to differences in behavior and/or ecology. The selective pressures underlying the evolution of eye size are especially well studied in birds, mammals, and fishes. However, whether similar scaling rules and selective pressures also underlie the evolution of eye size in amphibians remains enigmatic. Variation in eye size is intimately linked with variation in brain anatomy, as the retina is ontogenetically part of the brain. Eye size may therefore coevolve with brain size. Here we use phylogenetic comparative methods to study interspecific variation in eye volume across 44 species of anurans from 8 families from the Hengduan Mountains, China. We relate this variation to key factors known to impact eye size evolution in other vertebrate taxa such as body mass, habitat use, defense strategy and foraging mobility. We found that also in anurans eyes size scaled hypoallometrically with body mass. However, neither of the behavioral or ecological factors explained any variation in relative eye size in our sample. Whether this is representative for other frog species needs to be clarified. We therefore conclude that eye size in frogs is tightly linked to body mass evolution but that, at least in the species investigated here, none of our tested ecological and behavioral factors have a strong influence on eye size evolution.
  •  
6.
  •  
7.
  • Luo, Yi, et al. (författare)
  • Seasonality and brain size are negatively associated in frogs : evidence for the expensive brain framework
  • 2017
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • The challenges of seasonal environments are thought to contribute to brain evolution, but in which way is debated. According to the Cognitive Buffer Hypothesis (CBH) brain size should increase with seasonality, as the cognitive benefits of a larger brain should help overcoming periods of food scarcity via, for instance, increased behavioral flexibility. However, in line with the Expensive Brain Framework (EBF) brain size should decrease with seasonality because a smaller brain confers energetic benefits in periods of food scarcity. Empirical evidence is inconclusive and mostly limited to homoeothermic animals. Here we used phylogenetic comparative analyses to test the impact of seasonality on brain evolution across 30 species of anurans (frogs) experiencing a wide range of temperature and precipitation. Our results support the EBF because relative brain size and the size of the optic tectum were negatively correlated with variability in temperature. In contrast, we found no association between the variability in precipitation and the length of the dry season with either brain size or the sizes of other major brain regions. We suggest that seasonality-induced food scarcity resulting from higher variability in temperature constrains brain size evolution in anurans. Less seasonal environments may therefore facilitate the evolution of larger brains in poikilothermic animals.
  •  
8.
  • Pecunia, Vincenzo, et al. (författare)
  • Roadmap on energy harvesting materials
  • 2023
  • Ingår i: Journal of Physics. - : IOP Publishing. - 2515-7639. ; 6:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Ambient energy harvesting has great potential to contribute to sustainable development and address growing environmental challenges. Converting waste energy from energy-intensive processes and systems (e.g. combustion engines and furnaces) is crucial to reducing their environmental impact and achieving net-zero emissions. Compact energy harvesters will also be key to powering the exponentially growing smart devices ecosystem that is part of the Internet of Things, thus enabling futuristic applications that can improve our quality of life (e.g. smart homes, smart cities, smart manufacturing, and smart healthcare). To achieve these goals, innovative materials are needed to efficiently convert ambient energy into electricity through various physical mechanisms, such as the photovoltaic effect, thermoelectricity, piezoelectricity, triboelectricity, and radiofrequency wireless power transfer. By bringing together the perspectives of experts in various types of energy harvesting materials, this Roadmap provides extensive insights into recent advances and present challenges in the field. Additionally, the Roadmap analyses the key performance metrics of these technologies in relation to their ultimate energy conversion limits. Building on these insights, the Roadmap outlines promising directions for future research to fully harness the potential of energy harvesting materials for green energy anytime, anywhere.
  •  
9.
  • Yu, Xin, et al. (författare)
  • Large-brained frogs mature later and live longer
  • 2018
  • Ingår i: Evolution. - : Wiley. - 0014-3820 .- 1558-5646. ; 72:5, s. 1174-1183
  • Tidskriftsartikel (refereegranskat)abstract
    • Brain sizes vary substantially across vertebrate taxa, yet, the evolution of brain size appears tightly linked to the evolution of life histories. For example, larger brained species generally live longer than smaller brained species. A larger brain requires more time to grow and develop at a cost of exceeded gestation period and delayed weaning age. The cost of slower development may be compensated by better homeostasis control and increased cognitive abilities, both of which should increase survival probabilities and hence life span. To date, this relationship between life span and brain size seems well established in homoeothermic animals, especially in mammals. Whether this pattern occurs also in other clades of vertebrates remains enigmatic. Here, we undertake the first comparative test of the relationship between life span and brain size in an ectothermic vertebrate group, the anuran amphibians. After controlling for the effects of shared ancestry and body size, we find a positive correlation between brain size, age at sexual maturation, and life span across 40 species of frogs. Moreover, we also find that the ventral brain regions, including the olfactory bulbs, are larger in long-lived species. Our results indicate that the relationship between life history and brain evolution follows a general pattern across vertebrate clades.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9
Typ av publikation
tidskriftsartikel (8)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (9)
Författare/redaktör
Bozhkov, Peter (3)
Wang, Mei (2)
Wang, Xin (2)
Kominami, Eiki (2)
Bonaldo, Paolo (2)
Minucci, Saverio (2)
visa fler...
De Milito, Angelo (2)
Kågedal, Katarina (2)
Liu, Wei (2)
Clarke, Robert (2)
Kumar, Ashok (2)
Brest, Patrick (2)
Simon, Hans-Uwe (2)
Mograbi, Baharia (2)
Melino, Gerry (2)
Albert, Matthew L (2)
Lopez-Otin, Carlos (2)
Liu, Bo (2)
Ghavami, Saeid (2)
Uversky, Vladimir N. (2)
Harris, James (2)
Jakobsson, J. (2)
Zhang, Hong (2)
Zhang, Li (2)
Zorzano, Antonio (2)
Petersen, Morten (2)
Przyklenk, Karin (2)
Noda, Takeshi (2)
Zhao, Ying (2)
Kampinga, Harm H. (2)
Zhang, Lin (2)
Harris, Adrian L. (2)
Hill, Joseph A. (2)
Tannous, Bakhos A (2)
Segura-Aguilar, Juan (2)
Dikic, Ivan (2)
Kaminskyy, Vitaliy O ... (2)
Nishino, Ichizo (2)
Okamoto, Koji (2)
Olsson, Stefan (2)
Layfield, Robert (2)
Schorderet, Daniel F ... (2)
Hofman, Paul (2)
Lingor, Paul (2)
Xu, Liang (2)
Sood, Anil K (2)
Yue, Zhenyu (2)
Corbalan, Ramon (2)
Swanton, Charles (2)
Johansen, Terje (2)
visa färre...
Lärosäte
Stockholms universitet (6)
Lunds universitet (4)
Karolinska Institutet (4)
Linköpings universitet (3)
Sveriges Lantbruksuniversitet (3)
Göteborgs universitet (2)
visa fler...
Umeå universitet (2)
Chalmers tekniska högskola (2)
Uppsala universitet (1)
Högskolan i Halmstad (1)
Mittuniversitetet (1)
visa färre...
Språk
Engelska (9)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (8)
Medicin och hälsovetenskap (4)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy