SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhongfei Ren) "

Sökning: WFRF:(Zhongfei Ren)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ren, Zhongfei, et al. (författare)
  • Combination of adsorption/desorption and photocatalytic reduction processes for PFOA removal from water by using an aminated biosorbent and a UV/sulfite system
  • 2023
  • Ingår i: Environmental Research. - : Elsevier. - 0013-9351 .- 1096-0953. ; 228
  • Tidskriftsartikel (refereegranskat)abstract
    • Per- and polyfluoroalkyl substances (PFAS) are stable organic chemicals, which have been used globally since the 1940s and have caused PFAS contamination around the world. This study explores perfluorooctanoic acid (PFOA) enrichment and destruction by a combined method of sorption/desorption and photocatalytic reduction. A novel biosorbent (PG-PB) was developed from raw pine bark by grafting amine groups and quaternary ammonium groups onto the surface of bark particles. The results of PFOA adsorption at low concentration suggest that PG-PB has excellent removal efficiency (94.8%–99.1%, PG-PB dosage: 0.4 g/L) to PFOA in the concentration range of 10 μg/L to 2 mg/L. The PG-PB exhibited high adsorption efficiency regarding PFOA, being 456.0 mg/g at pH 3.3 and 258.0 mg/g at pH 7 with an initial concentration of 200 mg/L. The groundwater treatment reduced the total concentration of 28 PFAS from 18 000 ng/L to 9900 ng/L with 0.8 g/L of PG-PB. Desorption experiments examined 18 types of desorption solutions, and the results showed that 0.05% NaOH and a mixture of 0.05% NaOH + 20% methanol were efficient for PFOA desorption from the spent PG-PB. More than 70% (>70 mg/L in 50 mL) and 85% (>85 mg/L in 50 mL) of PFOA were recovered from the first and second desorption processes, respectively. Since high pH promotes PFOA degradation, the desorption eluents with NaOH were directly treated with a UV/sulfite system without further adjustment. The final PFOA degradation and defluorination efficiency in the desorption eluents with 0.05% NaOH + 20% methanol reached 100% and 83.1% after 24 h reaction. This study proved that the combination of adsorption/desorption and a UV/sulfite system for PFAS removal is a feasible solution for environmental remediation.
  •  
2.
  • Uwayezu, Jean Noel, et al. (författare)
  • Combination of separation and degradation methods after PFAS soil washing
  • 2023
  • Ingår i: Science of the Total Environment. - : Elsevier. - 0048-9697 .- 1879-1026. ; 907
  • Tidskriftsartikel (refereegranskat)abstract
    • The current study evaluated a three-stage treatment to remediate PFAS-contaminated soil. The treatment consisted of soil washing, foam fractionation (FF), and electrochemical oxidation (EO). The possibility of replacing the third stage, i.e., EO, with an adsorption process was also assessed. The contamination in the studied soils was dominated by perfluorooctane sulfonate (PFOS), with a concentration of 760 and 19 μg kg−1 in soil I and in soil II, accounting for 97 % and 70 % of all detected per-and polyfluoroalkyl substances (PFAS). Before applying a pilot treatment of soil, soil washing was performed on a laboratory scale, to evaluate the effect of soil particle size, initial pH and a liquid-to-soil ratio (L/S) on the leachability of PFAS. A pilot washing system generated soil leachate that was subsequently treated using FF and EO (or adsorption) and then reused for soil washing. The results indicated that the leaching of PFAS occurred easier in 0.063–1 mm particles than in the soil particles having a size below 0.063 mm. Both alkaline conditions and a continual replacement of the leaching solution increased the leachability of PFAS. The analysis using one-way ANOVA showed no statistical difference in means of PFOS washed out in laboratory and pilot scales. This allowed estimating twenty washing cycles using 120 L water to reach 95 % PFOS removal in 60 kg soil. The aeration process removed 95–99 % PFOS in every washing cycle. The EO and adsorption processes achieved similar results removing up to 97 % PFOS in concentrated soil leachate. The current study demonstrated a multi-stage treatment as an effective and cost-efficient method to permanently clean up PFAS-contaminated soil.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy