SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhu Haiming) "

Sökning: WFRF:(Zhu Haiming)

  • Resultat 1-27 av 27
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • You, Xiaohu, et al. (författare)
  • Towards 6G wireless communication networks: vision, enabling technologies, and new paradigm shifts
  • 2021
  • Ingår i: Science China Information Sciences. - : Science Press. - 1674-733X .- 1869-1919. ; 64:1
  • Forskningsöversikt (refereegranskat)abstract
    • The fifth generation (5G) wireless communication networks are being deployed worldwide from 2020 and more capabilities are in the process of being standardized, such as mass connectivity, ultra-reliability, and guaranteed low latency. However, 5G will not meet all requirements of the future in 2030 and beyond, and sixth generation (6G) wireless communication networks are expected to provide global coverage, enhanced spectral/energy/cost efficiency, better intelligence level and security, etc. To meet these requirements, 6G networks will rely on new enabling technologies, i.e., air interface and transmission technologies and novel network architecture, such as waveform design, multiple access, channel coding schemes, multi-antenna technologies, network slicing, cell-free architecture, and cloud/fog/edge computing. Our vision on 6G is that it will have four new paradigm shifts. First, to satisfy the requirement of global coverage, 6G will not be limited to terrestrial communication networks, which will need to be complemented with non-terrestrial networks such as satellite and unmanned aerial vehicle (UAV) communication networks, thus achieving a space-air-ground-sea integrated communication network. Second, all spectra will be fully explored to further increase data rates and connection density, including the sub-6 GHz, millimeter wave (mmWave), terahertz (THz), and optical frequency bands. Third, facing the big datasets generated by the use of extremely heterogeneous networks, diverse communication scenarios, large numbers of antennas, wide bandwidths, and new service requirements, 6G networks will enable a new range of smart applications with the aid of artificial intelligence (AI) and big data technologies. Fourth, network security will have to be strengthened when developing 6G networks. This article provides a comprehensive survey of recent advances and future trends in these four aspects. Clearly, 6G with additional technical requirements beyond those of 5G will enable faster and further communications to the extent that the boundary between physical and cyber worlds disappears.
  •  
2.
  • Liao, Xunfan, et al. (författare)
  • Regulating Favorable Morphology Evolution by a Simple Liquid-Crystalline Small Molecule Enables Organic Solar Cells with over 17% Efficiency and a Remarkable J(sc) of 26.56 mA/cm(2)
  • 2021
  • Ingår i: Chemistry of Materials. - : American Chemical Society (ACS). - 0897-4756 .- 1520-5002. ; 33:1, s. 430-440
  • Tidskriftsartikel (refereegranskat)abstract
    • Liquid crystal small molecules (LCSMs) are manifested as the effective additives to regulate the morphology of active layers and elevate the performance of ternary organic solar cells (TOSCs) in fullerene systems. However, the current studies for TOSCs based on efficient LCSMs are most out of the LC phase transition temperature, which is not conducive to accurately disclosure the effect of LCSMs on the morphology evolution. Besides, the inner working mechanism of LCSMs has not been investigated systematically and in-depth. Herein, a structurally simple donor-acceptor-donor type LCSM DFBT-TT6 with a low liquid crystal phase transition temperature is utilized as the third component to construct TOSCs based on a highly efficient nonfullerene system PM6:Y6. To unveil the work mechanism of LCSMs on the TOSCs performance and eliminate other interferences simultaneously, a structurally similar non-LCSM DFBT-DT6 with a low glass-transition temperature is further synthesized for a more clear comparison. Interestingly, the addition of DFBT-TT6 can delicately control the crystallinity and phase separation of PM6:Y6, rendering the optimized morphology with only 3 wt % DFBT-TT6. In contrast, the non-LCSM DFBT-DT6 shows a negligible effect on morphology regulation, indicating the unique ability of LC molecules in morphology control. The underlying working mechanism is revealed by the combined study of miscibility and the wetting coefficient of the blends, elucidating that the LCSM DFBT-TT6 has good compatibility with PM6 and Y6. Therefore, DFBT-TT6 is more prone to being located at the interface of PM6 and Y6, and it is energetically favorable for charge transfer. The aforementioned favorable morphology evolution is associated with improved crystallinity, phase separation, charge transfer, exciton dissociation, and collection efficiency, ultimately boosting the power conversion efficiency of TOSCs from 15.76% to 17.05% with a remarkable short-circuit current density of 26.56 mA/cm(2). This work not only offers deep insight into the LCSM induced morphology evolution but also puts forward an affordable strategy to achieve high-performance TOSCs.
  •  
3.
  • Wang, Cheng-Xiang, et al. (författare)
  • On the Road to 6G: Visions, Requirements, Key Technologies, and Testbeds
  • 2023
  • Ingår i: IEEE Communications Surveys and Tutorials. - : IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC. - 1553-877X. ; 25:2, s. 905-974
  • Tidskriftsartikel (refereegranskat)abstract
    • Fifth generation (5G) mobile communication systems have entered the stage of commercial deployment, providing users with new services, improved user experiences as well as a host of novel opportunities to various industries. However, 5G still faces many challenges. To address these challenges, international industrial, academic, and standards organizations have commenced research on sixth generation (6G) wireless communication systems. A series of white papers and survey papers have been published, which aim to define 6G in terms of requirements, application scenarios, key technologies, etc. Although ITU-R has been working on the 6G vision and it is expected to reach a consensus on what 6G will be by mid-2023, the related global discussions are still wide open and the existing literature has identified numerous open issues. This paper first provides a comprehensive portrayal of the 6G vision, technical requirements, and application scenarios, covering the current common understanding of 6G. Then, a critical appraisal of the 6G network architecture and key technologies is presented. Furthermore, existing testbeds and advanced 6G verification platforms are detailed for the first time. In addition, future research directions and open challenges are identified to stimulate the on-going global debate. Finally, lessons learned to date concerning 6G networks are discussed.
  •  
4.
  • Zhang, Jianyun, et al. (författare)
  • Revealing the Critical Role of the HOMO Alignment on Maximizing Current Extraction and Suppressing Energy Loss in Organic Solar Cells
  • 2019
  • Ingår i: iScience. - : Cell Press. - 2589-0042. ; 19, s. 883-893
  • Tidskriftsartikel (refereegranskat)abstract
    • For state-of-the-art organic solar cells (OSCs) consisting of a large-bandgap polymer donor and a near-infrared (NIR) molecular acceptor, the control of the HOMO offset is the key to simultaneously achieve small energy loss (Eloss) and high photocurrent. However, the relationship between HOMO offsets and the efficiency for hole separation is quite elusive so far, which requires a comprehensive understanding on how small the driving force can effectively perform the charge separation while obtaining a high photovoltage to ensure high OSC performance. By designing a new family of ZITI-X NIR acceptors (X = S, C, N) with a high structural similarity and matching them with polymer donor J71 forming reduced HOMO offsets, we systematically investigated and established the relationship among the photovoltaic performance, energy loss, and hole-transfer kinetics. We achieved the highest PCEavgs of 14.05 ± 0.21% in a ternary system (J71:ZITI-C:ZITI-N) that best optimize the balance between driving force and energy loss.
  •  
5.
  • Zhou, Zichun, et al. (författare)
  • Subtle Molecular Tailoring Induces Significant Morphology Optimization Enabling over 16% Efficiency Organic Solar Cells with Efficient Charge Generation
  • 2020
  • Ingår i: Advanced Materials. - : WILEY-V C H VERLAG GMBH. - 0935-9648 .- 1521-4095. ; 32:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Manipulating charge generation in a broad spectral region has proved to be crucial for nonfullerene-electron-acceptor-based organic solar cells (OSCs). 16.64% high efficiency binary OSCs are achieved through the use of a novel electron acceptor AQx-2 with quinoxaline-containing fused core and PBDB-TF as donor. The significant increase in photovoltaic performance of AQx-2 based devices is obtained merely by a subtle tailoring in molecular structure of its analogue AQx-1. Combining the detailed morphology and transient absorption spectroscopy analyses, a good structure-morphology-property relationship is established. The stronger pi-pi interaction results in efficient electron hopping and balanced electron and hole mobilities attributed to good charge transport. Moreover, the reduced phase separation morphology of AQx-2-based bulk heterojunction blend boosts hole transfer and suppresses geminate recombination. Such success in molecule design and precise morphology optimization may lead to next-generation high-performance OSCs.
  •  
6.
  •  
7.
  • Chen, Desui, et al. (författare)
  • Shelf-Stable Quantum-Dot Light-Emitting Diodes with High Operational Performance
  • 2020
  • Ingår i: Advanced Materials. - : Wiley-VCH Verlagsgesellschaft. - 0935-9648 .- 1521-4095. ; 32
  • Tidskriftsartikel (refereegranskat)abstract
    • Quantum-dot light-emitting diodes (QLEDs) promise a new generation of high-performance, large-area, and cost-effective electroluminescent devices for both display and solid-state lighting technologies. However, a positive ageing process is generally required to improve device performance for state-of-the-art QLEDs. Here, it is revealed that the in situ reactions induced by organic acids in the commonly used encapsulation acrylic resin lead to positive ageing and, most importantly, the progression of in situ reactions inevitably results in negative ageing, i.e., deterioration of device performance after long-term shelf storage. In-depth mechanism studies focusing on the correlations between the in situ chemical reactions and the shelf-ageing behaviors of QLEDs inspire the design of an electron-transporting bilayer, which delivers both improved electrical conductivity and suppressed interfacial exciton quenching. This material innovation enables red QLEDs exhibiting neglectable changes of external quantum efficiency (>20.0%) and ultralong operational lifetime (T-95: 5500 h at 1000 nits) after storage for 180 days. This work provides design principles for oxide electron-transporting layers to realize shelf-stable and high-operational-performance QLEDs, representing a new starting point for both fundamental studies and practical applications.
  •  
8.
  • Hao, Zhengming, et al. (författare)
  • Converting n-Alkanol to Conjugated Polyenal on Cu(110) Surface at Mild Temperature
  • 2022
  • Ingår i: The Journal of Physical Chemistry Letters. - : AMER CHEMICAL SOC. - 1948-7185. ; 13:14, s. 3276-3282
  • Tidskriftsartikel (refereegranskat)abstract
    • Achieving C(sp(3))-H activation at a mild temperature is of great importance from both scientific and technologic points of view. Herein, on the basis of the on-surface synthesis strategy, we report the significant reduction of the C(sp(3))-H activation barrier, which results in the full C(sp(3))-H to C(sp(2))-H transformation of n-alkanol (octacosan-1-ol) at a mild temperature as low as 350 K on the Cu(110) surface, yielding the conjugated polyenal (octacosa-tridecaenal) as the final product. The reaction mechanism is revealed by the combined scanning tunneling microscope, density functional theory, and synchrotron radiation photoemission spectroscopy.
  •  
9.
  • He, Chengliang, et al. (författare)
  • Asymmetric electron acceptor enables highly luminescent organic solar cells with certified efficiency over 18%
  • 2022
  • Ingår i: Nature Communications. - : NATURE PORTFOLIO. - 2041-1723. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Enhancing the luminescence property without sacrificing the charge collection is one key to high-performance organic solar cells (OSCs), while limited by the severe non-radiative charge recombination. Here, we demonstrate efficient OSCs with high luminescence via the design and synthesis of an asymmetric non-fullerene acceptor, BO-5Cl. Blending BO-5Cl with the PM6 donor leads to a record-high electroluminescence external quantum efficiency of 0.1%, which results in a low non-radiative voltage loss of 0.178 eV and a power conversion efficiency (PCE) over 15%. Importantly, incorporating BO-5Cl as the third component into a widely-studied donor:acceptor (D:A) blend, PM6:BO-4Cl, allows device displaying a high certified PCE of 18.2%. Our joint experimental and theoretical studies unveil that more diverse D:A interfacial conformations formed by asymmetric acceptor induce optimized blend interfacial energetics, which contributes to the improved device performance via balancing charge generation and recombination. High-performance organic solar cells call for novel designs of acceptor molecules. Here, He et al. design and synthesize a non-fullerene acceptor with an asymmetric structure for diverse donor:acceptor interfacial conformations and report a certificated power conversion efficiency of 18.2%.
  •  
10.
  • He, Chengliang, et al. (författare)
  • Near infrared electron acceptors with a photoresponse beyond 1000 nm for highly efficient organic solar cells
  • 2020
  • Ingår i: Journal of Materials Chemistry A. - : ROYAL SOC CHEMISTRY. - 2050-7488 .- 2050-7496. ; 8:35, s. 18154-18161
  • Tidskriftsartikel (refereegranskat)abstract
    • Developing near infrared (NIR) organic semiconductors is indispensable for promoting the performance of organic solar cells (OSCs), but addressing the trade-off between voltage and current density thus achieving high efficiency with low energy loss is still an urgent challenge. Herein, NIR acceptors (H1, H2 and H3) with a photoresponse beyond 1000 nm were developed by conjugating dithienopyrrolobenzothiadiazole to 2-(5,6-difluoro-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrileviavaried alkyl thiophene bridges. It was found that the linear outward chains in thiophene bridges could mitigate both the conformation disorder of H3 and the electronic disorder of the PBDB-T:H3 blends, which could help to form a favorable blend morphology, facilitating highly efficient photoelectric conversion in the resultant OSCs. As a result, devices based on PBDB-T:H3 achieve a high efficiency of 13.75% with a low energy loss of 0.55 eV, which is one of the highest efficiencies and the lowest energy loss among OSCs with an optoelectronic response near 1000 nm. This work provides a new design strategy towards NIR acceptors for efficient OSCs and future exploration of functional optoelectronics.
  •  
11.
  • Jia, Zhenrong, et al. (författare)
  • Near-infrared absorbing acceptor with suppressed triplet exciton generation enabling high performance tandem organic solar cells
  • 2023
  • Ingår i: Nature Communications. - : NATURE PORTFOLIO. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Reducing the energy loss of sub-cells is critical for high performance tandem organic solar cells, while it is limited by the severe non-radiative voltage loss via the formation of non-emissive triplet excitons. Herein, we develop an ultra-narrow bandgap acceptor BTPSeV-4F through replacement of terminal thiophene by selenophene in the central fused ring of BTPSV-4F, for constructing efficient tandem organic solar cells. The selenophene substitution further decrease the optical bandgap of BTPSV-4F to 1.17 eV and suppress the formation of triplet exciton in the BTPSV-4F-based devices. The organic solar cells with BTPSeV-4F as acceptor demonstrate a higher power conversion efficiency of 14.2% with a record high short-circuit current density of 30.1 mA cm(-2) and low energy loss of 0.55 eV benefitted from the low non-radiative energy loss due to the suppression of triplet exciton formation. We also develop a high-performance medium bandgap acceptor O1-Br for front cells. By integrating the PM6:O1-Br based front cells with the PTB7-Th:BTPSeV-4F based rear cells, the tandem organic solar cell demonstrates a power conversion efficiency of 19%. The results indicate that the suppression of triplet excitons formation in the near-infrared-absorbing acceptor by molecular design is an effective way to improve the photovoltaic performance of the tandem organic solar cells. Reducing energy loss of sub-cells is critical for high performance tandem organic solar cells. Here, the authors design and synthesize an ultra-narrow bandgap acceptor through replacement of terminal thiophene by selenophene in the central fused ring, achieving efficiency of 19% for tandem cells.
  •  
12.
  • Jian, Jinpeng, et al. (författare)
  • Enhancing Li-S battery performance via functional polymer binders for polysulfide inhibition
  • 2024
  • Ingår i: Journal of Energy Chemistry. - : Elsevier. - 2095-4956 .- 2096-885X. ; 97, s. 228-236
  • Tidskriftsartikel (refereegranskat)abstract
    • The commercialization of lithium -sulfur (Li -S) batteries faces several challenges, including poor conductivity, unexpected volume expansion, and continuous sulfur loss from the cathode due to redox shuttling. In this study, we introduce a novel polymer via a simple cross -linking between poly(ether-thioureas) (PETU) and poly(3,4-ethylenedioxythiophene)- poly(styrenesulfonate) (PEDOT:PSS) as a bifunctional binder for Li -S batteries (devotes as "PPTU"). Compared to polyvinylidene fluoride (PVDF), as -prepared PPTU exhibits significantly higher electrical conductivity, facilitating electrochemical reactions. Additionally, PPTU demonstrates effective adsorption of lithium polysulfides, leading to improved cycling stability by suppressing the shuttling effect. We investigate this behavior by monitoring morphological changes at the cell interface using synchrotron X-ray tomography. Cells with PPTU binders exhibit remarkable rate performance, desired reversibility, and excellent cycling stability even under stringent bending and twisting conditions. Our work represents promising progress in functional polymer binder development for Li -S batteries. (c) 2024 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
  •  
13.
  • Li, Dan, et al. (författare)
  • A bifunctional MnxCo3-xO4-decorated separator for efficient Li-LiI-O2 batteries : A novel strategy to promote redox coupling and inhibit redox shuttling
  • 2022
  • Ingår i: Chemical Engineering Journal. - : Elsevier. - 1385-8947 .- 1873-3212. ; 428
  • Tidskriftsartikel (refereegranskat)abstract
    • Although redox mediator (RM) strategy can decrease the overpotential in Li-O2 batteries by tuning the electrochemical formation/degradation of Li2O2 from the circumscribed surface pathway to the solution one, the redox shuttling causes an unexpected RM degradation and a continuous deterioration of Li anode, finally leading to a poor cyclability. This work presents the first report detailing the development of a novel MnxCo3-xO4-decorated separator for Li-LiI-O2 batteries. Benefiting from the promotion effect of MnxCo3-xO4 nanocages on I−/I3− and I3−/I2 redox coupling, the cell with as-prepared separator maintains a low charge potential of ~3.3 V till the death of cell cycling. In addition, as-prepared separator can efficiently restrain the redox shuttling, leading to an obvious improvement on cycling stability for the cell. Moreover, the contributions of LiI to the battery performance and the operation mechanism are systematically investigated. These results present a promising progress in the development of multi-functional separator materials for RM-involved Li-O2 batteries and the new design of hybrid energy storage device.
  •  
14.
  •  
15.
  • Li, Danqin, et al. (författare)
  • n-Doping of photoactive layer in binary organic solar cells realizes over 18.3% efficiency
  • 2022
  • Ingår i: Nano Energy. - : ELSEVIER. - 2211-2855 .- 2211-3282. ; 96
  • Tidskriftsartikel (refereegranskat)abstract
    • Electronic doping of conjugated semiconductor plays a critical role in the fabrication of high efficiency organic optoelectronic devices. Here, we report an organic solar cell (OSC) by doping n-type DMBI-BDZC into one host binary bulk heterojunction (BHJ) photoactive layer comprised of a polymer donor PM6 and a nonfullerene acceptor Y6. The resulting champion device yields a significantly improved power conversion efficiency from 17.17% to 18.33% with an impressive fill factor of 80.20%. It is found that the electrically doped photoactive layer exhibits enhanced and balanced charge carrier mobilities, more effective exciton dissociation, longer carrier lifetime, and suppressed charge recombination with smaller energy loss. The dopant molecule DMBIBDZC also act as a surface morphology modifier of the photoactive layer with enhanced charge transport. This work demonstrates that manipulation of charge transport via adding a low concentration dopant into photoactive layer is a promising approach for further improvement of BHJ OSC performance.
  •  
16.
  • Li, Qing, et al. (författare)
  • Hierarchical Dehydrogenation Reactions on a Copper Surface
  • 2018
  • Ingår i: Journal of the American Chemical Society. - : AMER CHEMICAL SOC. - 0002-7863 .- 1520-5126. ; 140:19, s. 6076-6082
  • Tidskriftsartikel (refereegranskat)abstract
    • Hierarchical control of chemical reactions is being considered as one of the most ambitious and challenging topics in modern organic chemistry. In this study, we have realized the one-by-one scission of the X-H bonds (X = N and C) of aromatic amines in a controlled fashion on the Cu(lll) surface. Each dehydrogenation reaction leads to certain metal-organic supramolecular structures, which were monitored in single-bond resolution via scanning tunneling microscopy and noncontact atomic force microscopy. Moreover, the reaction pathways were elucidated from X-ray photoelectron spectroscopy measurements and density functional theory calculations. Our insights pave the way for connecting molecules into complex structures in a more reliable and predictable manner, utilizing carefully tuned stepwise on-surface synthesis protocols.
  •  
17.
  • Li, Shuixing, et al. (författare)
  • Asymmetric Electron Acceptors for High-Efficiency and Low-Energy-Loss Organic Photovoltaics
  • 2020
  • Ingår i: Advanced Materials. - : WILEY-V C H VERLAG GMBH. - 0935-9648 .- 1521-4095. ; 32
  • Tidskriftsartikel (refereegranskat)abstract
    • Low energy loss and efficient charge separation under small driving forces are the prerequisites for realizing high power conversion efficiency (PCE) in organic photovoltaics (OPVs). Here, a new molecular design of nonfullerene acceptors (NFAs) is proposed to address above two issues simultaneously by introducing asymmetric terminals. Two NFAs, BTP-S1 and BTP-S2, are constructed by introducing halogenated indandione (A(1)) and 3-dicyanomethylene-1-indanone (A(2)) as two different conjugated terminals on the central fused core (D), wherein they share the same backbone as well-known NFA Y6, but at different terminals. Such asymmetric NFAs with A(1)-D-A(2) structure exhibit superior photovoltaic properties when blended with polymer donor PM6. Energy loss analysis reveals that asymmetric molecule BTP-S2 with six chlorine atoms attached at the terminals enables the corresponding devices to give an outstanding electroluminescence quantum efficiency of 2.3 x 10(-2)%, one order of magnitude higher than devices based on symmetric Y6 (4.4 x 10(-3)%), thus significantly lowering the nonradiative loss and energy loss of the corresponding devices. Besides, asymmetric BTP-S1 and BTP-S2 with multiple halogen atoms at the terminals exhibit fast hole transfer to the donor PM6. As a result, OPVs based on the PM6:BTP-S2 blend realize a PCE of 16.37%, higher than that (15.79%) of PM6:Y6-based OPVs. A further optimization of the ternary blend (PM6:Y6:BTP-S2) results in a best PCE of 17.43%, which is among the highest efficiencies for single-junction OPVs. This work provides an effective approach to simultaneously lower the energy loss and promote the charge separation of OPVs by molecular design strategy.
  •  
18.
  • Li, Shuixing, et al. (författare)
  • Unveiling structure-performance relationships from multi-scales in non-fullerene organic photovoltaics
  • 2021
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Unveiling the correlations among molecular structures, morphological characteristics, macroscopic properties and device performances is crucial for developing better photovoltaic materials and achieving higher efficiencies. To achieve this goal, a comprehensive study is performed based on four state-of-the-art non-fullerene acceptors (NFAs), which allows to systematically examine the above-mentioned correlations from different scales. Its found that extending conjugation of NFA shows positive effects on charge separation promotion and non-radiative loss reduction, while asymmetric terminals can maximize benefits from both terminals. Another molecular optimization is from alkyl chain tuning. The shortened alkyl side chain results in strengthened terminal packing and decreased pi-pi distance, which contribute high carrier mobility and finally the high charge collection efficiency. With the most-acquired benefits from molecular structure and macroscopic factors, PM6:BTP-S9-based organic photovoltaics (OPVs) exhibit the optimal efficiency of 17.56% (certified: 17.4%) with a high fill factor of 78.44%, representing the best among asymmetric acceptor based OPVs. This work provides insight into the structure-performance relationships, and paves the way toward high-performance OPVs via molecular design. Understanding correlations between molecular structures and macroscopic properties is critical in realising highly efficient organic photovoltaics. Here, the authors conduct a comprehensive study based on four non-fullerene acceptors revealing how the extended conjugation, asymmetric terminals and alkyl chain length can affect device performance.
  •  
19.
  • Li, Yaokai, et al. (författare)
  • Mechanism study on organic ternary photovoltaics with 18.3% certified efficiency: from molecule to device
  • 2022
  • Ingår i: Energy & Environmental Science. - : ROYAL SOC CHEMISTRY. - 1754-5692 .- 1754-5706. ; 15:2, s. 855-865
  • Tidskriftsartikel (refereegranskat)abstract
    • Multi-component organic photovoltaics (OPVs), e.g., ternary blends, are effective for high performance, while the fundamental understanding from the molecular to device level is lacking. To address this issue, we here systematically study the working mechanism of ternary OPVs based on non-fullerene acceptors (NFAs). With both molecular dynamics simulations and morphology characterization, we identify that when adding another larger band gap and highly miscible NFA, namely IT-4F or BTP-S2, into the PBDB-TF:BTP-eC9 blend, the NFAs undergo molecular intermixing selectively with BTP-eC9. This causes the composition-dependent band gap and charge recombination, and hence the composition-dependent V-OC. While the charge recombination still dominantly occurs at the PBDB-TF:BTP-eC9 interface, BTP-S2 or IT-4F plays an auxiliary role in facilitating charge transfer and suppressing non-radiative decay. Interestingly, intermolecular end-group packing in the intermixed blend is improved compared to that in pristine films, leading to higher carrier mobility. These synergistic effects significantly improve the power conversion efficiency of the device to an outstanding value of 18.7% (certified value of 18.3%).
  •  
20.
  • Wang, Kang, et al. (författare)
  • Luminescent metal-halide perovskites: fundamentals, synthesis, and light-emitting devices
  • 2024
  • Ingår i: Science in China Series B. - : SCIENCE PRESS. - 1674-7291 .- 1869-1870. ; 67:6, s. 1776-1838
  • Forskningsöversikt (refereegranskat)abstract
    • Metal-halide perovskites have garnered considerable research attention as highly efficient light emitters in recent years due to their outstanding optoelectronic properties with remarkable tunability and excellent solution processabilities. Substantial advancements have been achieved in the development of novel halide perovskites, and the exploitations of these materials in light-emitting devices. This review comprehensively outlines recent breakthroughs in metal-halide perovskites, encompassing the rational design of perovskite materials with tunable light emission properties, the controllable growth of single crystal for a deeper understanding of their structure-property relationships, as well as the fundamental insights into the photophysics and carrier dynamics in perovskite systems. Additionally, it provides an overview of recent applications of perovskite materials in high-performance light-emitting diodes (LEDs) and lasers.
  •  
21.
  • Wen, Tian-Jiao, et al. (författare)
  • Non-fused medium bandgap electron acceptors for efficient organic photovoltaics
  • 2022
  • Ingår i: Journal of Energy Challenges and Mechanics. - : ELSEVIER. - 2056-9386. ; 70, s. 576-582
  • Tidskriftsartikel (refereegranskat)abstract
    • The cost-effective organic semiconductors are strongly needed in organic photovoltaics (OPVs). Herein, two medium bandgap (MBG) electron acceptors, TPT4F and TPT4Cl are developed via the new design of multi-noncovalent interaction assisted unfused core, flanked with two electron withdrawing end groups. These fullly non-fused MBG acceptors adapt the planar and rigid conformation in solid, therefore exhibiting the ordered face-on stacking and strong photoluminescence in films. As results, TPT4Cl-based OPVs, upon blending with the PBDB-TF polymer donor, have achieved a power conversion efficiency of 10.16% with a low non-radiative loss of 0.27 eV, representing one of the best fullly non-fused medium bandgap acceptors with desirable cost-efficiency balance. (c) 2022 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights reserved.
  •  
22.
  • Xia, Xinxin, et al. (författare)
  • Revealing the crystalline packing structure of Y6 in the active layer of organic solar cells: the critical role of solvent additives
  • 2023
  • Ingår i: Journal of Materials Chemistry A. - : ROYAL SOC CHEMISTRY. - 2050-7488 .- 2050-7496. ; 11:40, s. 21895-21907
  • Tidskriftsartikel (refereegranskat)abstract
    • The bulk heterojunction (BHJ) morphology of photovoltaic materials is crucial to the fundamental optoelectronic properties of organic solar cells (OSCs). However, in the photoactive layer, the intrinsic crystalline packing structure of Y6, currently the hallmark molecule among Y-series non-fullerene acceptors (NFAs), has not been unambiguously determined. Here, employing grazing-incidence wide-angle X-ray scattering (GIWAXS), we managed to uncover the intrinsic crystalline packing structure of Y6 in the BHJ active layer of OSCs, which is found to be different from its single-crystal structure reported previously. Moreover, we find that solvent additive 1-chloronaphthalene (CN) can induce highly ordered packing of Y6 in BHJ thin films. With the help of atomistic molecular dynamics simulations, it is revealed that pi-pi interactions generally exist between naphthalene derivatives and IC terminals of Y6 analogues, which would essentially improve their long-range ordering. Our work reveals the intrinsic crystalline packing structure of Y6 in the BHJ active layer as well as its crystallization mechanism in thin films, thus providing direct correlations between this crystalline packing and the device characteristics and photophysical properties.
  •  
23.
  • Xiong, Shaobing, et al. (författare)
  • Reducing nonradiative recombination for highly efficient inverted perovskite solar cells via a synergistic bimolecular interface
  • 2024
  • Ingår i: Nature Communications. - : NATURE PORTFOLIO. - 2041-1723. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Reducing interface nonradiative recombination is important for realizing highly efficient perovskite solar cells. In this work, we develop a synergistic bimolecular interlayer (SBI) strategy via 4-methoxyphenylphosphonic acid (MPA) and 2-phenylethylammonium iodide (PEAI) to functionalize the perovskite interface. MPA induces an in-situ chemical reaction at the perovskite surface via forming strong P-O-Pb covalent bonds that diminish the surface defect density and upshift the surface Fermi level. PEAI further creates an additional negative surface dipole so that a more n-type perovskite surface is constructed, which enhances electron extraction at the top interface. With this cooperative surface treatment, we greatly minimize interface nonradiative recombination through both enhanced defect passivation and improved energetics. The resulting p-i-n device achieves a stabilized power conversion efficiency of 25.53% and one of the smallest nonradiative recombination induced Voc loss of only 59 mV reported to date. We also obtain a certified efficiency of 25.05%. This work sheds light on the synergistic interface engineering for further improvement of perovskite solar cells. Reducing interface nonradiative recombination is important for realizing highly efficient perovskite solar cells. Here, the authors employ a bimolecular interlayer to functionalize the perovskite interface, achieving cooperative surface treatment and certified power conversion efficiency of 25.05%.
  •  
24.
  • Yao, Nannan, et al. (författare)
  • Efficient Charge Transport Enables High Efficiency in Dilute Donor Organic Solar Cells
  • 2021
  • Ingår i: The Journal of Physical Chemistry Letters. - : American Chemical Society. - 1948-7185. ; 12:20, s. 5039-5044
  • Tidskriftsartikel (refereegranskat)abstract
    • The donor/acceptor weight ratio is crucial for photovoltaic performance of organic solar cells (OSCs). Here, we systematically investigate the photovoltaic behaviors of PM6:Y6 solar cells with different stoichiometries. It is found that the photovoltaic performance is tolerant to PM6 contents ranging from 10 to 60 wt %. Especially an impressive efficiency over 10% has been achieved in dilute donor solar cells with 10 wt % PM6 enabled by efficient charge generation, electron/ hole transport, slow charge recombination, and field-insensitive extraction. This raises the question about the origin of efficient hole transport in such dilute donor structure. By investigating hole mobilities of PM6 diluted in Y6 and insulators, we find that effective hole transport pathway is mainly through PM6 phase in PM6:Y6 blends despite with low PM6 content. The results indicate that a low fraction of polymer donors combines with near-infrared nonfullerene acceptors could achieve high photovoltaic performance, which might be a candidate for semitransparent windows.
  •  
25.
  • Zhu, Wuming, et al. (författare)
  • Diameter and Chirality Changes of Single-Walled Carbon nanotubes During Growth : An ab-inition Study
  • 2009
  • Ingår i: Journal of Nanoscience and Nanotechnology. - : American Scientific Publishers. - 1533-4880 .- 1533-4899. ; 9:2, s. 1222-1225
  • Tidskriftsartikel (refereegranskat)abstract
    • We use density functional theory to investigate possible changes of the diameter and chirality of single-walled carbon nanotubes (SWNTs) during catalyzed growth on a nickel cluster. The interplay of nanotube curvature, defects, and carbon-metal interaction dictates if a change is energetically favorable. We found that, given a sufficiently large Ni cluster, both zigzag and armchair nanotubes tend to increase their diameters during growth. This increase leads to a larger increase in energetic stability for smaller diameter nanotubes. Chirality changes are also demonstrated. Our findings impact on the possibility of using the recently proposed nanotube-seeded continued growth of SWNTs to control their chirality.
  •  
26.
  •  
27.
  • Zhu, Zhenke, et al. (författare)
  • Microorganisms maintain C:N stoichiometric balance by regulating the priming effect in long-term fertilized soils
  • 2021
  • Ingår i: Applied Soil Ecology. - : Elsevier BV. - 0929-1393. ; 167
  • Tidskriftsartikel (refereegranskat)abstract
    • Labile carbon (C) inputs affect the soil carbon:nitrogen (C:N) ratio and microbial stoichiometric homeostasis, which control the intensity and direction of the priming effect (PE). Here, we clarified how soil microorganisms regulate enzyme production and PE to maintain the C:N stoichiometric balance. Specifically, we conducted an incubation experiment by adding 13C-labeled glucose to four long-term fertilized paddy soils: no fertilization; fertilization with mineral nitrogen, phosphorus, and potassium (NPK); NPK combined with straw; and NPK with manure (NPKM). After glucose addition, the dissolved organic carbon-to-ammonium (DOC:NH4+) ratio (24–39) initially increased, but subsequently decreased after day 2 following glucose exhaustion. In parallel, the microbial C:N imbalance [(DOC:NH4+):(microbial biomass C:microbial biomass N)] rapidly decreased from day 2 (4.6–7.2) to day 20 (<0.5). Thus, microorganisms became C limited after 20 days of incubation. Excess C, resulting from glucose addition, increased N-hydrolase (chitinase) production and N mining from soil organic matter (SOM) through positive PEs. However, C hydrolase (β-1,4-glucosidase and β-xylosidase) activity increased, while that of N hydrolase (chitinase) decreased, following glucose exhaustion. Consequently, the C:N microbial biomass ratio increased as the DOC:NH4+ ratio decreased, leading to negative PEs. NPKM-fertilized soil had the largest cumulative PE (2.3% of soil organic carbon) because it had the highest microbial biomass and iron (Fe) reduction rate. Thus, this increased N mining from SOM maintained the microbial C:N stoichiometric balance. We concluded that soil microorganisms regulate C- and N-hydrolase production to control the intensity and direction of PE, maintaining the C:N stoichiometric balance in response to labile C inputs.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-27 av 27

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy