SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ziolkowska Agnieszka) "

Sökning: WFRF:(Ziolkowska Agnieszka)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Brouwer, Bastiaan, et al. (författare)
  • The impact of light intensity on shade-induced leaf senescence
  • 2012
  • Ingår i: Plant, Cell and Environment. - Malden, MA : Wiley-Blackwell. - 0140-7791 .- 1365-3040. ; 35:6, s. 1084-1098
  • Tidskriftsartikel (refereegranskat)abstract
    • Plants often have to cope with altered light conditions, which in leaves induce various physiological responses ranging from photosynthetic acclimation to leaf senescence. However, our knowledge of the regulatory pathways by which shade and darkness induce leaf senescence remains incomplete. To determine to what extent reduced light intensities regulate the induction of leaf senescence, we performed a functional comparison between Arabidopsis leaves subjected to a range of shading treatments. Individually covered leaves, which remained attached to the plant, were compared with respect to chlorophyll, protein, histology, expression of senescence-associated genes, capacity for photosynthesis and respiration, and light compensation point (LCP). Mild shading induced photosynthetic acclimation and resource partitioning, which, together with a decreased respiration, lowered the LCP. Leaf senescence was induced only under strong shade, coinciding with a negative carbon balance and independent of the red/far-red ratio. Interestingly, while senescence was significantly delayed at very low light compared with darkness, phytochrome A mutant plants showed enhanced chlorophyll degradation under all shading treatments except complete darkness. Taken together, our results suggest that the induction of leaf senescence during shading depends on the efficiency of carbon fixation, which in turn appears to be modulated via light receptors such as phytochrome A.
  •  
2.
  • Chrobok, Daria, et al. (författare)
  • Dissecting the Metabolic Role of Mitochondria during Developmental Leaf Senescence
  • 2016
  • Ingår i: Plant Physiology. - : Oxford University Press (OUP). - 0032-0889 .- 1532-2548. ; 172:4, s. 2132-2153
  • Tidskriftsartikel (refereegranskat)abstract
    • The functions of mitochondria during leaf senescence, a type of programmed cell death aimed at the massive retrieval of nutrients from the senescing organ to the rest of the plant, remain elusive. Here, combining experimental and analytical approaches, we showed that mitochondrial integrity in Arabidopsis (Arabidopsis thaliana) is conserved until the latest stages of leaf senescence, while their number drops by 30%. Adenylate phosphorylation state assays and mitochondrial respiratory measurements indicated that the leaf energy status also is maintained during this time period. Furthermore, after establishing a curated list of genes coding for products targeted to mitochondria, we analyzed in isolation their transcript profiles, focusing on several key mitochondrial functions, such as the tricarboxylic acid cycle, mitochondrial electron transfer chain, iron-sulfur cluster biosynthesis, transporters, as well as catabolic pathways. In tandem with a metabolomic approach, our data indicated that mitochondrial metabolism was reorganized to support the selective catabolism of both amino acids and fatty acids. Such adjustments would ensure the replenishment of alpha-ketoglutarate and glutamate, which provide the carbon backbones for nitrogen remobilization. Glutamate, being the substrate of the strongly up-regulated cytosolic glutamine synthase, is likely to become a metabolically limiting factor in the latest stages of developmental leaf senescence. Finally, an evolutionary age analysis revealed that, while branched-chain amino acid and proline catabolism are very old mitochondrial functions particularly enriched at the latest stages of leaf senescence, auxin metabolism appears to be rather newly acquired. In summation, our work shows that, during developmental leaf senescence, mitochondria orchestrate catabolic processes by becoming increasingly central energy and metabolic hubs.
  •  
3.
  • Heidler, Thomas V., et al. (författare)
  • Porphyromonas gingivalis fimbrial protein Mfa5 contains a von Willebrand factor domain and an intramolecular isopeptide
  • 2021
  • Ingår i: Communications Biology. - : Springer Nature. - 2399-3642. ; 4:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The Gram-negative bacterium Porphyromonas gingivalis is a secondary colonizer of the oral biofilm and is involved in the onset and progression of periodontitis. Its fimbriae, of type-V, are important for attachment to other microorganisms in the biofilm and for adhesion to host cells. The fimbriae are assembled from five proteins encoded by the mfa1 operon, of which Mfa5 is one of the ancillary tip proteins. Here we report the X-ray structure of the N-terminal half of Mfa5, which reveals a von Willebrand factor domain and two IgG-like domains. One of the IgG-like domains is stabilized by an intramolecular isopeptide bond, which is the first such bond observed in a Gram-negative bacterium. These features make Mfa5 structurally more related to streptococcal adhesins than to the other P. gingivalis Mfa proteins. The structure reported here indicates that horizontal gene transfer has occurred among the bacteria within the oral biofilm.
  •  
4.
  • Liebsch, Daniela, et al. (författare)
  • Metabolic adjustments required for extended leaf longevity under prolonged darkness revealed by a new loss of function allele of PIF5
  • 2018
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Senescence is regulated by a complex interplay of factors and regulatory circuits, which may be accelerated or delayed depending on the integrated signals. Using a forward genetic screen in Arabidopsis thaliana, we identified a mutant strongly delayed in its induction of senescence in response to prolonged darkness. This mutant, which corresponds to a novel loss-of-function allele of PIF5 (PHYTOCHROME-INTERACTING FACTOR 5), exhibits even slightly more extended survival of leaves in darkness than the previously reported pif5-3 TDNA knock-out line. In the present study, we additionally aimed at deciphering the metabolic and regulatory processes conferring this enhanced capacity for survival in pif5 mutants. We combined physiological, metabolomic and transcriptomic analyses, and discovered that the extended survival of mutant leaves in darkness was associated with reduced protein degradation, slight differences in amino acid catabolism related gene expression as well as strong reduction of amino acid transporter expression, which coincided with enhanced amino acid accumulation. Our findings suggest that enhanced survival in darkness could be mediated by moderate levels of protein degradation allowing build up and slow usage of amino acids as alternative respiratory substrates, while during irreversible senescence, strong degradative processes, together with enhanced amino acid transport either to the site of their metabolization inside the leaf, or to other organs in the plant, could promote the fast progression of senescence and antagonize survival. Comparative metabolomics and gene expression analyses suggested that the senescence regulatory network downstream of PIF5 organizes these irreversible stages of leaf senescence, promoting autophagy and amino acid export, possibly by direct binding of important senescence promoting factors like ORE1 to the promoters of some of the involved genes. The failure to induce these later stages may prolong the reversible phase of darkening, thus potentially leading to drastically increased viability of individually darkened leaves under darkness for over 2 weeks.
  •  
5.
  • Liebsch, Daniela, et al. (författare)
  • Metabolic control of arginine and ornithine levels paces the progression of leaf senescence
  • 2022
  • Ingår i: Plant Physiology. - : Oxford University Press. - 0032-0889 .- 1532-2548. ; 189:4, s. 1943-1960
  • Tidskriftsartikel (refereegranskat)abstract
    • Leaf senescence can be induced by stress or aging, sometimes in a synergistic manner. It is generally acknowledged that the ability to withstand senescence-inducing conditions can provide plants with stress resilience. Although the signaling and transcriptional networks responsible for a delayed senescence phenotype, often referred to as a functional stay-green trait, have been actively investigated, very little is known about the subsequent metabolic adjustments conferring this aptitude to survival. First, using the individually darkened leaf (IDL) experimental setup, we compared IDLs of wild-type (WT) Arabidopsis (Arabidopsis thaliana) to several stay-green contexts, that is IDLs of two functional stay-green mutant lines, oresara1-2 (ore1-2) and an allele of phytochrome-interacting factor 5 (pif5), as well as to leaves from a WT plant entirely darkened (DP). We provide compelling evidence that arginine and ornithine, which accumulate in all stay-green contexts—likely due to the lack of induction of amino acids (AAs) transport—can delay the progression of senescence by fueling the Krebs cycle or the production of polyamines (PAs). Secondly, we show that the conversion of putrescine to spermidine (SPD) is controlled in an age-dependent manner. Thirdly, we demonstrate that SPD represses senescence via interference with ethylene signaling by stabilizing the ETHYLENE BINDING FACTOR1 and 2 (EBF1/2) complex. Taken together, our results identify arginine and ornithine as central metabolites influencing the stress- and age-dependent progression of leaf senescence. We propose that the regulatory loop between the pace of the AA export and the progression of leaf senescence provides the plant with a mechanism to fine-tune the induction of cell death in leaves, which, if triggered unnecessarily, can impede nutrient remobilization and thus plant growth and survival.
  •  
6.
  • Mucibabic, Marija, et al. (författare)
  • alpha-Synuclein promotes IAPP fibril formation in vitro and beta-cell amyloid formation in vivo in mice
  • 2020
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Type 2 diabetes (T2D), alike Parkinson's disease (PD), belongs to the group of protein misfolding diseases (PMDs), which share aggregation of misfolded proteins as a hallmark. Although the major aggregating peptide in beta -cells of T2D patients is Islet Amyloid Polypeptide (IAPP), alpha-synuclein (alpha Syn), the aggregating peptide in substantia nigra neurons of PD patients, is expressed also in beta -cells. Here we show that alpha Syn, encoded by Snca, is a component of amyloid extracted from pancreas of transgenic mice overexpressing human IAPP (denoted hIAPPtg mice) and from islets of T2D individuals. Notably, alpha Syn dose-dependently promoted IAPP fibril formation in vitro and tail-vein injection of alpha Syn in hIAPPtg mice enhanced beta -cell amyloid formation in vivo whereas beta -cell amyloid formation was reduced in hIAPPtg mice on a Snca (-/-) background. Taken together, our findings provide evidence that alpha Syn and IAPP co-aggregate both in vitro and in vivo, suggesting a role for alpha Syn in beta -cell amyloid formation.
  •  
7.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7
Typ av publikation
tidskriftsartikel (6)
annan publikation (1)
Typ av innehåll
refereegranskat (6)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Ziolkowska, Agnieszk ... (7)
Keech, Olivier (4)
Brouwer, Bastiaan (4)
Lindén, Pernilla (3)
Liebsch, Daniela (3)
Law, Simon R. (3)
visa fler...
Moritz, Thomas (2)
Gardeström, Per (2)
Delhomme, Nicolas (2)
Gardeström, Per, 195 ... (2)
Juvany, Marta (2)
Chrobok, Daria (2)
Lo Re, Giada, 1971 (1)
Stenlund, Hans (1)
Zozoulenko, Igor (1)
Claesson, Rolf (1)
Müller, Christian, 1 ... (1)
Sandblad, Linda (1)
Persson, Karina (1)
Ernits, Karin (1)
Whelan, James (1)
Kádár, Roland, 1982 (1)
Evenäs, Lars, 1976 (1)
Bagard, Matthieu (1)
Szal, Bożena (1)
Edlund, Helena, 1960 ... (1)
Boussardon, Clément (1)
Narsai, Reena (1)
Rouhier, Nicolas (1)
Chrobok, Daria, 1987 ... (1)
Lund, Anja, 1971 (1)
Steneberg, Pär (1)
Dahl, Ulf (1)
Mehandzhiyski, Alexa ... (1)
Heidler, Thomas V. (1)
Guo, Hongwei (1)
Melkovicová, Helena (1)
Li, Zhonghai (1)
Wang, Hou-Ling (1)
Wen, Xing (1)
Janečková, Helena (1)
Peterson, Anna, 1988 (1)
Svenningsson, Leo, 1 ... (1)
Mucibabic, Marija (1)
Lidh, Emmelie (1)
Straseviciene, Jurat ... (1)
Vernersson-Lindahl, ... (1)
visa färre...
Lärosäte
Umeå universitet (7)
Sveriges Lantbruksuniversitet (2)
Linköpings universitet (1)
Chalmers tekniska högskola (1)
Språk
Engelska (7)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (6)
Teknik (1)
Medicin och hälsovetenskap (1)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy