SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zlotina A) "

Sökning: WFRF:(Zlotina A)

  • Resultat 1-14 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Jorholt, J, et al. (författare)
  • Two New Cases of Hypertrophic Cardiomyopathy and Skeletal Muscle Features Associated with ALPK3 Homozygous and Compound Heterozygous Variants
  • 2020
  • Ingår i: Genes. - : MDPI AG. - 2073-4425. ; 11:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Hypertrophic cardiomyopathy associated with damaging variants in the ALPK3 gene is a fairly recent discovery, and only a small number of patients have been described thus far. Here we present two additional patients with hypertrophic cardiomyopathy caused by biallelic variants in ALPK3. Genetic investigation was performed using a targeted gene panel consisting of known cardiomyopathy-associated genes and whole exome sequencing. The patients showed a large difference in the age of onset, and both presented with extracardiac features that are often seen in ALPK3 patients. The patient with the later onset showed milder extracardiac symptoms, such as decreased muscle tone and distal muscular dystrophy, but had fast progression of cardiac complications leading to the need of heart transplantation. This study further elucidates the variability of both symptoms and age of onset among these patients.
  •  
6.
  •  
7.
  •  
8.
  • Kovalchuk, T, et al. (författare)
  • Case Reports: Emery-Dreifuss Muscular Dystrophy Presenting as a Heart Rhythm Disorders in Children
  • 2021
  • Ingår i: Frontiers in cardiovascular medicine. - : Frontiers Media SA. - 2297-055X. ; 8, s. 668231-
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Emery-Dreifuss muscular dystrophy (EDMD) is inherited muscle dystrophy often accompanied by cardiac abnormalities in the form of supraventricular arrhythmias, conduction defects and sinus node dysfunction. Cardiac phenotype typically arises years after skeletal muscle presentation, though, could be severe and life-threatening. The defined clinical manifestation with joint contractures, progressive muscle weakness and atrophy, as well as cardiac symptoms are observed by the third decade of life. Still, clinical course and sequence of muscle and cardiac signs may be variable and depends on the genotype. Cardiac abnormalities in patients with EDMD in pediatric age are not commonly seen. Here we describe five patients with different forms of EDMD (X-linked and autosomal-dominant) caused by the mutations in EMD and LMNA genes, presented with early onset of cardiac abnormalities and no prominent skeletal muscle phenotype. The predominant forms of cardiac pathology were atrial arrhythmias and conduction disturbances that progress over time. The presented cases discussed in the light of therapeutic strategy, including radiofrequency ablation and antiarrhythmic devices implantation, and the importance of thorough neurological and genetic screening in pediatric patients presenting with complex heart rhythm disorders.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  • Khodyuchenko, T, et al. (författare)
  • Congenital heart defects are rarely caused by mutations in cardiac and smooth muscle actin genes
  • 2015
  • Ingår i: BioMed research international. - : Hindawi Limited. - 2314-6141 .- 2314-6133. ; 2015, s. 127807-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background. Congenital heart defects (CHDs) often have genetic background due to missense mutations in cardiomyocyte-specific genes. For example, cardiac actin was shown to be involved in pathogenesis of cardiac septum defects and smooth muscle actin in pathogenesis of aortic aneurysm in combination with patent ductus arteriosus (PDA). In the present study, we further searched for mutations in humanα-cardiac actin (ACTC1) and smooth muscleα-actin (ACTA2) genes as a possible cause of atrial septum defect type II (ASDII) and PDA.Findings. Total genomic DNA was extracted from peripheral blood of 86 individuals with ASDs and 100 individuals with PDA. Coding exons and flanking intron regions ofACTC1(NM_005159.4) andACTA2(NM_001613) were amplified by PCR with specific primers designed according to the corresponding gene reference sequences. PCR fragments were directly sequenced and analyzed. Sequence analysis ofACTC1andACTA2did not identify any nucleotide changes that altered the coding sense of the genes. InACTC1gene, we were able to detect one previously described nucleotide polymorphism (rs2307493) resulting in a synonymous substitution. The frequency of this SNP was similar in the study and control group, thus excluding it from the possible disease-associated variants.Conclusions. Our results confirmed that the mutations inACTC1gene are rare (at least <1%) cause of ASDII. Mutations inACTA2gene were not detected in patients with PDA, thus being excluded from the list of frequent PDA-associated genetic defects.
  •  
13.
  • Zlotina, A, et al. (författare)
  • A 300-kb microduplication of 7q36.3 in a patient with triphalangeal thumb-polysyndactyly syndrome combined with congenital heart disease and optic disc coloboma: a case report
  • 2020
  • Ingår i: BMC medical genomics. - : Springer Science and Business Media LLC. - 1755-8794. ; 13:1, s. 175-
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundTriphalangeal thumb-polysyndactyly syndrome (TPT-PS) is a rare well-defined autosomal dominant disorder characterized by long thumbs with three phalanges combined with pre- and postaxial polydactyly/syndactyly of limbs. By now, the syndrome has been reported in several large families from different ethnic backgrounds, with a high degree of inter- and intrafamilial variability. The genome locus responsible for TPT-PS has been mapped to the 7q36.3 region harboring a long-range sonic hedgehog (SHH) regulatory sequence (ZRS). Both single-nucleotide variants and complete duplications of ZRS were shown to cause TPT-PS and similar limb phenotypes. TPT-PS usually forms as isolated limb pathology not associated with additional malformations, in particular, with cardiovascular abnormalities.Case presentationHere we report on a rare Russian neonatal case of TPT-PS combined with severe congenital heart disease, namely double outlet right ventricle, and microphthalmia with optic disc coloboma. Pedigree analysis revealed TPT-PS of various expressivity in 10 family members throughout five generations, while the cardiac defect and the eye pathology were detected only in the proband. To extend the knowledge on genotype–phenotype spectrum of TPT-PS, the careful clinical and genomic analysis of the family was performed. High-resolution array-based comparative genomic hybridization (array-CGH) revealed a ~ 300 kb microduplication of 7q36.3 locus (arr[GRCh37] 7q36.3(156385810_156684811) × 3) that co-segregated with TPT-PS in the proband and her mother. The duplication encompassed three genes includingLMBR1, the intron 5 of which is known to harbor ZRS. Based on whole-exome sequencing data, no additional pathogenic mutations or variants of uncertain clinical significance were found in morbid cardiac genes or genes associated with a microphthalmia/anophthalmia/coloboma spectrum of ocular malformations.ConclusionsThe results support the previous data, indicating that complete ZRS duplication underlies TPT-PS, and suggest a broader phenotypic impact of the 7q36.3 microduplication. Potential involvement of the 7q36.3 microduplication in the patient’s cardiac and eye malformations is discussed. However, the contribution of some additional genetic/epigenetic factors to the complex patient`s phenotype cannot be excluded entirely. Further comprehensive functional studies are needed to prove the possible involvement of the 7q36.3 locus in congenital heart disease and eye pathology.
  •  
14.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-14 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy