SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zopfi Jakob) "

Sökning: WFRF:(Zopfi Jakob)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bravo, Andrea Garcia, et al. (författare)
  • Geobacteraceae are important members of mercury-methylating microbial communities of sediments impacted by waste water releases
  • 2018
  • Ingår i: The ISME Journal. - : Springer Science and Business Media LLC. - 1751-7362 .- 1751-7370. ; 12, s. 802-812
  • Tidskriftsartikel (refereegranskat)abstract
    • Microbial mercury (Hg) methylation in sediments can result in bioaccumulation of the neurotoxin methylmercury (MMHg) in aquatic food webs. Recently, the discovery of the gene hgcA, required for Hg methylation, revealed that the diversity of Hg methylators is much broader than previously thought. However, little is known about the identity of Hg-methylating microbial organisms and the environmental factors controlling their activity and distribution in lakes. Here, we combined high-throughput sequencing of 16S rRNA and hgcA genes with the chemical characterization of sediments impacted by a waste water treatment plant that releases significant amounts of organic matter and iron. Our results highlight that the ferruginous geochemical conditions prevailing at 1–2 cm depth are conducive to MMHg formation and that the Hgmethylating guild is composed of iron and sulfur-transforming bacteria, syntrophs, and methanogens. Deltaproteobacteria, notably Geobacteraceae, dominated the hgcA carrying communities, while sulfate reducers constituted only a minor component, despite being considered the main Hg methylators in many anoxic aquatic environments. Because iron is widely applied in waste water treatment, the importance of Geobacteraceae for Hg methylation and the complexity of Hgmethylating communities reported here are likely to occur worldwide in sediments impacted by waste water treatment plant discharges and in iron-rich sediments in general.
  •  
2.
  • Bravo, Andrea Garcia, et al. (författare)
  • High methylmercury production under ferruginous conditions in sediments impacted by sewage treatment plant discharges
  • 2015
  • Ingår i: Water Research. - : Elsevier BV. - 0043-1354 .- 1879-2448. ; 80, s. 245-255
  • Tidskriftsartikel (refereegranskat)abstract
    • Sewage treatment plants (STPs) are important point sources of mercury (Hg) to the environment. STPs are also significant sources of iron when hydrated ferric oxide (HFO) is used as a dephosphatation agent during water purification. In this study, we combined geochemical and microbiological characterization with Hg speciation and sediment amendments to evaluate the impact of STP's effluents on monomethylmercury (MMHg) production. The highest in-situ Hg methylation was found close to the discharge pipe in subsurface sediments enriched with Hg, organic matter, and iron. There, ferruginous conditions were prevailing with high concentrations of dissolved Fe2+ and virtually no free sulfide in the porewater. Sediment incubations demonstrated that the high MMHg production close to the discharge was controlled by low demethylation yields. Inhibition of dissimilatory sulfate reduction with molybdate led to increased iron reduction rates and Hg-methylation, suggesting that sulfate-reducing bacteria (SRB) may not have been the main Hg methylators under these conditions. However, Hg methylation in sediments amended with amorphous Fe(III)-oxides was only slightly higher than control conditions. Thus, in addition to iron-reducing bacteria, other non-SRB most likely contributed to Hg methylation. Overall, this study highlights that sediments impacted by STP discharges can become local hot-spots for Hg methylation due to the combined inputs of i) Hg, ii) organic matter, which fuels bacterial activities and iii) iron, which keeps porewater sulfide concentration low and hence Hg bioavailable.
  •  
3.
  • Buck, Moritz, et al. (författare)
  • Comprehensive dataset of shotgun metagenomes from oxygen stratified freshwater lakes and ponds
  • 2021
  • Ingår i: Scientific Data. - : Springer Science and Business Media LLC. - 2052-4463. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Stratified lakes and ponds featuring steep oxygen gradients are significant net sources of greenhouse gases and hotspots in the carbon cycle. Despite their significant biogeochemical roles, the microbial communities, especially in the oxygen depleted compartments, are poorly known. Here, we present a comprehensive dataset including 267 shotgun metagenomes from 41 stratified lakes and ponds mainly located in the boreal and subarctic regions, but also including one tropical reservoir and one temperate lake. For most lakes and ponds, the data includes a vertical sample set spanning from the oxic surface to the anoxic bottom layer. The majority of the samples were collected during the open water period, but also a total of 29 samples were collected from under the ice. In addition to the metagenomic sequences, the dataset includes environmental variables for the samples, such as oxygen, nutrient and organic carbon concentrations. The dataset is ideal for further exploring the microbial taxonomic and functional diversity in freshwater environments and potential climate change impacts on the functioning of these ecosystems.
  •  
4.
  •  
5.
  • Garcia Bravo, Andrea, et al. (författare)
  • Extremely elevated methyl mercury levels in water, sediment and organisms in a Romanian reservoir affected by release of mercury from a chlor-alkali plant
  • 2014
  • Ingår i: Water Research. - : Elsevier BV. - 0043-1354 .- 1879-2448. ; 49, s. 391-405
  • Tidskriftsartikel (refereegranskat)abstract
    • We examined mercury (Hg) biogeochemistry and biomagnification in the Babeni Reservoir, a system strongly affected by the release of Hg from a chlor-alkali plant. Total mercury (THg) concentrations in river water reached 88 ng L−1 but decreased rapidly in the reservoir (to 9 ng L−1). In contrast, monomethylmercury (MMHg) concentrations increased from the upstream part of the reservoir to the central part (0.7 ng L−1), suggesting high methylation within the reservoir. Moreover, vertical water column profiles of THg and MMHg indicated that Hg methylation mainly occurred deep in the water column and at the sediment–water interface. The discharge of Hg from a chlor-alkali plant in Valcea region caused the highest MMHg concentrations ever found in non-piscivorous fish worldwide. MMHg concentrations and bioconcentration factors (BCF) of plankton and macrophytes revealed that the highest biomagnification of MMHg takes place in primary producers.
  •  
6.
  • Hu, Haiyan, et al. (författare)
  • Shifts in mercury methylation across a peatland chronosequence : From sulfate reduction to methanogenesis and syntrophy
  • 2020
  • Ingår i: Journal of Hazardous Materials. - : Elsevier. - 0304-3894 .- 1873-3336. ; 387
  • Tidskriftsartikel (refereegranskat)abstract
    • Peatlands are globally important ecosystems where inorganic mercury is converted to bioaccumulating and highly toxic methylmercury, resulting in high risks of methylmercury exposure in adjacent aquatic ecosystems. Although biological mercury methylation has been known for decades, there is still a lack of knowledge about the organisms involved in mercury methylation and the drivers controlling their methylating capacity. In order to investigate the metabolisms responsible for mercury methylation and methylmercury degradation as well as the controls of both processes, we studied a chronosequence of boreal peatlands covering fundamentally different biogeochemical conditions. Potential mercury methylation rates decreased with peatland age, being up to 53 times higher in the youngest peatland compared to the oldest. Methylation in young mires was driven by sulfate reduction, while methanogenic and syntrophic metabolisms became more important in older systems. Demethylation rates were also highest in young wetlands, with a gradual shift from biotic to abiotic methylmercury degradation along the chronosequence. Our findings reveal how metabolic shifts drive mercury methylation and its ratio to demethylation as peatlands age.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy