SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zscheischler Jakob) "

Sökning: WFRF:(Zscheischler Jakob)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bustamante, Mercedes, et al. (författare)
  • Ten new insights in climate science 2023
  • 2023
  • Ingår i: Global Sustainability. - : CAMBRIDGE UNIV PRESS. - 2059-4798. ; 7
  • Forskningsöversikt (refereegranskat)abstract
    • Non-technical summary We identify a set of essential recent advances in climate change research with high policy relevance, across natural and social sciences: (1) looming inevitability and implications of overshooting the 1.5 degrees C warming limit, (2) urgent need for a rapid and managed fossil fuel phase-out, (3) challenges for scaling carbon dioxide removal, (4) uncertainties regarding the future contribution of natural carbon sinks, (5) intertwinedness of the crises of biodiversity loss and climate change, (6) compound events, (7) mountain glacier loss, (8) human immobility in the face of climate risks, (9) adaptation justice, and (10) just transitions in food systems.Technical summary The Intergovernmental Panel on Climate Change Assessment Reports provides the scientific foundation for international climate negotiations and constitutes an unmatched resource for researchers. However, the assessment cycles take multiple years. As a contribution to cross- and interdisciplinary understanding of climate change across diverse research communities, we have streamlined an annual process to identify and synthesize significant research advances. We collected input from experts on various fields using an online questionnaire and prioritized a set of 10 key research insights with high policy relevance. This year, we focus on: (1) the looming overshoot of the 1.5 degrees C warming limit, (2) the urgency of fossil fuel phase-out, (3) challenges to scale-up carbon dioxide removal, (4) uncertainties regarding future natural carbon sinks, (5) the need for joint governance of biodiversity loss and climate change, (6) advances in understanding compound events, (7) accelerated mountain glacier loss, (8) human immobility amidst climate risks, (9) adaptation justice, and (10) just transitions in food systems. We present a succinct account of these insights, reflect on their policy implications, and offer an integrated set of policy-relevant messages. This science synthesis and science communication effort is also the basis for a policy report contributing to elevate climate science every year in time for the United Nations Climate Change Conference.Social media summary We highlight recent and policy-relevant advances in climate change research - with input from more than 200 experts.
  •  
2.
  • Frank, Dorothe A., et al. (författare)
  • Effects of climate extremes on the terrestrial carbon cycle : concepts, processes and potential future impacts
  • 2015
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 21:8, s. 2861-2880
  • Forskningsöversikt (refereegranskat)abstract
    • Extreme droughts, heat waves, frosts, precipitation, wind storms and other climate extremes may impact the structure, composition and functioning of terrestrial ecosystems, and thus carbon cycling and its feedbacks to the climate system. Yet, the interconnected avenues through which climate extremes drive ecological and physiological processes and alter the carbon balance are poorly understood. Here, we review the literature on carbon cycle relevant responses of ecosystems to extreme climatic events. Given that impacts of climate extremes are considered disturbances, we assume the respective general disturbance-induced mechanisms and processes to also operate in an extreme context. The paucity of well-defined studies currently renders a quantitative meta-analysis impossible, but permits us to develop a deductive framework for identifying the main mechanisms (and coupling thereof) through which climate extremes may act on the carbon cycle. We find that ecosystem responses can exceed the duration of the climate impacts via lagged effects on the carbon cycle. The expected regional impacts of future climate extremes will depend on changes in the probability and severity of their occurrence, on the compound effects and timing of different climate extremes, and on the vulnerability of each land-cover type modulated by management. Although processes and sensitivities differ among biomes, based on expert opinion, we expect forests to exhibit the largest net effect of extremes due to their large carbon pools and fluxes, potentially large indirect and lagged impacts, and long recovery time to regain previous stocks. At the global scale, we presume that droughts have the strongest and most widespread effects on terrestrial carbon cycling. Comparing impacts of climate extremes identified via remote sensing vs. ground-based observational case studies reveals that many regions in the (sub-)tropics are understudied. Hence, regional investigations are needed to allow a global upscaling of the impacts of climate extremes on global carbon-climate feedbacks.
  •  
3.
  • Mahecha, Miguel D., et al. (författare)
  • Detecting impacts of extreme events with ecological in situ monitoring networks
  • 2017
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 14:18, s. 4255-4277
  • Tidskriftsartikel (refereegranskat)abstract
    • Extreme hydrometeorological conditions typically impact ecophysiological processes on land. Satellite-based observations of the terrestrial biosphere provide an important reference for detecting and describing the spatiotemporal development of such events. However, in-depth investigations of ecological processes during extreme events require additional in situ observations. The question is whether the density of existing ecological in situ networks is sufficient for analysing the impact of extreme events, and what are expected event detection rates of ecological in situ networks of a given size. To assess these issues, we build a baseline of extreme reductions in the fraction of absorbed photosynthetically active radiation (FAPAR), identified by a new event detection method tailored to identify extremes of regional relevance. We then investigate the event detection success rates of hypothetical networks of varying sizes. Our results show that large extremes can be reliably detected with relatively small networks, but also reveal a linear decay of detection probabilities towards smaller extreme events in log-log space. For instance, networks with approximate to 100 randomly placed sites in Europe yield a >= 90% chance of detecting the eight largest (typically very large) extreme events; but only a >= 50% chance of capturing the 39 largest events. These findings are consistent with probability-theoretic considerations, but the slopes of the decay rates deviate due to temporal autocorrelation and the exact implementation of the extreme event detection algorithm. Using the examples of AmeriFlux and NEON, we then investigate to what degree ecological in situ networks can capture extreme events of a given size. Consistent with our theoretical considerations, we find that today's systematically designed networks (i.e. NEON) reliably detect the largest extremes, but that the extreme event detection rates are not higher than would be achieved by randomly designed networks. Spatio-temporal expansions of ecological in situ monitoring networks should carefully consider the size distribution characteristics of extreme events if the aim is also to monitor the impacts of such events in the terrestrial biosphere.
  •  
4.
  • Messori, Gabriele, et al. (författare)
  • Compound Climate Events and Extremes in the Midlatitudes Dynamics, Simulation, and Statistical Characterization
  • 2021
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - : American Meteorological Society. - 0003-0007 .- 1520-0477. ; 102:4, s. E774-E781
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • The workshop, conducted virtually due to travel restrictions related to COVID-19, gathered scientists from six countries and focused on the mechanistic understanding, statistical characterization, and modeling of societally relevant compound climate events and extremes in the midlatitudes. These ranged from co-occurring hot–humid or wet–windy extremes, to spatially compounding wet and dry extremes, to temporallycompounding hot–wet events and more. The aim was to bring together selected experts studying a diverse range of compound climate events and extremes to present their ongoing work and outline challenges and future developments in this societally relevant field of research.
  •  
5.
  • Muheki, Derrick, et al. (författare)
  • The perfect storm? : Co-occurring climate extremes in East Africa
  • 2024
  • Ingår i: Earth System Dynamics. - : Copernicus Publications. - 2190-4979 .- 2190-4987. ; 15:2, s. 429-466
  • Tidskriftsartikel (refereegranskat)abstract
    • Co-occurring extreme climate events exacerbate adverse impacts on humans, the economy, and the environment relative to extremes occurring in isolation. While changes in the frequency of individual extreme events have been researched extensively, changes in their interactions, dependence, and joint occurrence have received far less attention, particularly in the East African region. Here, we analyse the joint occurrence of pairs of the following extremes within the same location and calendar year over East Africa: river floods, droughts, heatwaves, crop failures, wildfires and tropical cyclones. We analyse their co-occurrence on a yearly timescale because some of the climate extremes we consider play out over timescales up to several months. We use bias-adjusted impact simulations under past and future climate conditions from the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP). We find an increase in the area affected by pairs of these extreme events, with the strongest increases for joint heatwaves and wildfires ( + 940 % by the end of the century under RCP6.0 relative to present day), followed by river floods and heatwaves ( + 900 % ) and river floods and wildfires ( + 250 % ). The projected increase in joint occurrences typically outweighs historical increases even under an aggressive mitigation scenario (RCP2.6). We illustrate that the changes in the joint occurrences are often driven by increases in the probability of one of the events within the pairs, for instance heatwaves. The most affected locations in the East Africa region by these co-occurring events are areas close to the River Nile and parts of the Congo basin. Our results overall highlight that co-occurring extremes will become the norm rather than the exception in East Africa, even under low-end warming scenarios.
  •  
6.
  • Reichstein, Markus, et al. (författare)
  • Climate extremes and the carbon cycle
  • 2013
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 500:7462, s. 287-295
  • Tidskriftsartikel (refereegranskat)abstract
    • The terrestrial biosphere is a key component of the global carbon cycle and its carbon balance is strongly influenced by climate. Continuing environmental changes are thought to increase global terrestrial carbon uptake. But evidence is mounting that climate extremes such as droughts or storms can lead to a decrease in regional ecosystem carbon stocks and therefore have the potential to negate an expected increase in terrestrial carbon uptake. Here we explore the mechanisms and impacts of climate extremes on the terrestrial carbon cycle, and propose a pathway to improve our understanding of present and future impacts of climate extremes on the terrestrial carbon budget.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy