SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zuo Fanglei) "

Sökning: WFRF:(Zuo Fanglei)

  • Resultat 1-19 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abolhassani, Hassan, et al. (författare)
  • Genetic and immunologic evaluation of children with inborn errors of immunity and severe or critical COVID-19
  • 2022
  • Ingår i: Journal of Allergy and Clinical Immunology. - : Elsevier. - 0091-6749 .- 1097-6825. ; 150:5, s. 1059-1073
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Most severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected individuals are asymptomatic or only exhibit mild disease. In about 10% of cases, the infection leads to hypoxemic pneumonia, although it is much more rare in children. Objective: We evaluated 31 young patients aged 0.5 to 19 years who had preexisting inborn errors of immunity (IEI) but lacked a molecular diagnosis and were later diagnosed with coronavirus disease 2019 (COVID-19) complications. Methods: Genetic evaluation by whole-exome sequencing was performed in all patients. SARS-CoV-2-specific antibodies, autoantibodies against type I IFN (IFN-I), and inflammatory factors in plasma were measured. We also reviewed COVID-19 disease severity/outcome in reported IEI patients. Results: A potential genetic cause of the IEI was identified in 28 patients (90.3%), including mutations that may affect IFN signaling, T- and B-cell function, the inflammasome, and the complement system. From tested patients 65.5% had detectable virus-specific antibodies, and 6.8% had autoantibodies neutralizing IFN-I. Five patients (16.1%) fulfilled the diagnostic criteria of multisystem inflammatory syndrome in children. Eleven patients (35.4%) died of COVID-19 complications. All together, at least 381 IEI children with COVID-19 have been reported in the literature to date. Although many patients with asymptomatic or mild disease may not have been reported, severe presentation of COVID-19 was observed in 23.6% of the published cases, and the mortality rate was 8.7%. Conclusions: Young patients with preexisting IEI may have higher mortality than children without IEI when infected with SARS-CoV-2. Elucidating the genetic basis of IEI patients with severe/critical COVID-19 may help to develop better strategies for prevention and treatment of severe COVID-19 disease and complications in pediatric patients.
  •  
2.
  • Abolhassani, Hassan, et al. (författare)
  • Inherited IFNAR1 Deficiency in a Child with Both Critical COVID-19 Pneumonia and Multisystem Inflammatory Syndrome
  • 2022
  • Ingår i: Journal of Clinical Immunology. - : Springer Nature. - 0271-9142 .- 1573-2592. ; 42:3, s. 471-483
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Inborn errors of immunity (IEI) and autoantibodies to type I interferons (IFNs) underlie critical COVID-19 pneumonia in at least 15% of the patients, while the causes of multisystem inflammatory syndrome in children (MIS-C) remain elusive. Objectives To detect causal genetic variants in very rare cases with concomitant critical COVID-19 pneumonia and MIS-C. Methods Whole exome sequencing was performed, and the impact of candidate gene variants was investigated. Plasma levels of cytokines, specific antibodies against the virus, and autoantibodies against type I IFNs were also measured. Results We report a 3-year-old child who died on day 56 of SARS-CoV-2 infection with an unusual clinical presentation, combining both critical COVID-19 pneumonia and MIS-C. We identified a large, homozygous loss-of-function deletion in IFNAR1, underlying autosomal recessive IFNAR1 deficiency. Conclusions Our findings confirm that impaired type I IFN immunity can underlie critical COVID-19 pneumonia, while suggesting that it can also unexpectedly underlie concomitant MIS-C. Our report further raises the possibility that inherited or acquired dysregulation of type I IFN immunity might contribute to MIS-C in other patients.
  •  
3.
  • Abolhassani, Hassan, et al. (författare)
  • X-Linked TLR7 Deficiency Underlies Critical COVID-19 Pneumonia in a Male Patient with Ataxia-Telangiectasia
  • 2022
  • Ingår i: Journal of Clinical Immunology. - : Springer Science and Business Media LLC. - 0271-9142 .- 1573-2592. ; 42:1, s. 1-9
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Coronavirus disease 2019 (COVID-19) exhibits a wide spectrum of clinical manifestations, ranging from asymptomatic to critical conditions. Understanding the mechanism underlying life-threatening COVID-19 is instrumental for disease prevention and treatment in individuals with a high risk.Objectives We aimed to identify the genetic cause for critical COVID-19 pneumonia in a patient with a preexisting inborn error of immunity (IEI).Methods Serum levels of specific antibodies against the virus and autoantibodies against type I interferons (IFNs) were measured. Whole exome sequencing was performed, and the impacts of candidate gene variants were investigated. We also evaluated 247 ataxia-telangiectasia (A-T) patients in the Iranian IEI registry.Results We report a 7-year-old Iranian boy with a preexisting hyper IgM syndrome who developed critical COVID-19 pneumonia. IgM only specific COVID-19 immune response was detected but no autoantibodies against type I IFN were observed. A homozygous deleterious mutation in the ATM gene was identified, which together with his antibody deficiency, radiosensitivity, and neurological signs, established a diagnosis of A-T. Among the 247 A-T patients evaluated, 36 had SARS-CoV-2 infection, but all had mild symptoms or were asymptomatic except the index patient. A hemizygous deleterious mutation in the TLR7 gene was subsequently identified in the patient.Conclusions We report a unique IEI patient with combined ATM and TLR7 deficiencies. The two genetic defects underlie A-T and critical COVID-19 in this patient, respectively.
  •  
4.
  • Björkander, Sophia, et al. (författare)
  • SARS-CoV-2-specific B- and T-cell immunity in a population-based study of young Swedish adults
  • 2022
  • Ingår i: Journal of Allergy and Clinical Immunology. - : Elsevier BV. - 0091-6749 .- 1097-6825. ; 149:1, s. 65-75
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Young adults are now considered major spreaders of coronavirus disease 2019 (COVID-19) disease. Although most young individuals experience mild to moderate disease, there are concerns of long-term adverse health effects. The impact of COVID-19 disease and to which extent population-level immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exists in young adults remain unclear.Objective: We conducted a population-based study on humoral and cellular immunity to SARS-CoV-2 and explored COVID-19 disease characteristics in young adults.Methods: We invited participants from the Swedish BAMSE (Barn [Children], Allergy Milieu, Stockholm, Epidemiology) birth cohort (age 24-27 years) to take part in a COVID-19 followup. From 980 participants (October 2020 to June 2021), we here present data on SARS-CoV-2 receptor-binding domain-specific IgM, IgA, and IgG titers measured by ELISA and on symptoms and epidemiologic factors associated with seropositivity. Further, SARS-CoV-2-specific memory B-and T-cell responses were detected for a subpopulation (n 5 108) by ELISpot and FluoroSpot.Results: A total of 28.4% of subjects were seropositive, of whom 18.4% were IgM single positive. One in 7 seropositive subjects was asymptomatic. Seropositivity was associated with use of public transport, but not with sex, asthma, rhinitis, IgE sensitization, smoking, or body mass index. In a subset of representative samples, 20.7% and 35.0% had detectable SARSCoV-2 specific B-and T-cell responses, respectively. B-and T-cell memory responses were clearly associated with seropositivity, but T-cell responses were also detected in 17.2% of seronegative subjects.Conclusions: Assessment of IgM and T-cell responses may improve population-based estimations of SARS-CoV-2 infection. The pronounced surge of both symptomatic and asymptomatic infections among young adults indicates that the large-scale vaccination campaign should be continued. (J Allergy Clin Immunol 2022;149:65-75.)
  •  
5.
  • Hueting, David A., et al. (författare)
  • Design, structure and plasma binding of ancestral β-CoV scaffold antigens
  • 2023
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the application of ancestral sequence reconstruction on coronavirus spike protein, resulting in stable and highly soluble ancestral scaffold antigens (AnSAs). The AnSAs interact with plasma of patients recovered from COVID-19 but do not bind to the human angiotensin-converting enzyme 2 (ACE2) receptor. Cryo-EM analysis of the AnSAs yield high resolution structures (2.6–2.8 Å) indicating a closed pre-fusion conformation in which all three receptor-binding domains (RBDs) are facing downwards. The structures reveal an intricate hydrogen-bonding network mediated by well-resolved loops, both within and across monomers, tethering the N-terminal domain and RBD together. We show that AnSA-5 can induce and boost a broad-spectrum immune response against the wild-type RBD as well as circulating variants of concern in an immune organoid model derived from tonsils. Finally, we highlight how AnSAs are potent scaffolds by replacing the ancestral RBD with the wild-type sequence, which restores ACE2 binding and increases the interaction with convalescent plasma.
  •  
6.
  • Marcotte, Harold, et al. (författare)
  • An exploratory pilot study evaluating the supplementation of standard antibiotic therapy with probiotic lactobacilli in south African women with bacterial vaginosis
  • 2019
  • Ingår i: BMC Infectious Diseases. - : BioMed Central. - 1471-2334. ; 19:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundTo reduce acquisition and relapse of bacterial vaginosis (BV), lactobacilli must be maintained in the vaginal microbiome. Probiotic lactobacilli may aid this purpose. We investigated whether vaginal probiotics (containing Lactobacillus rhamnosus DSM 14870 and Lactobacillus gasseri DSM 14869) would result in vaginal colonisation with lactobacilli in women with and without BV.MethodsThis prospective, partially randomised, exploratory pilot study was conducted in Soweto, South Africa. Thirty-nine sexually-active, HIV negative women were enrolled from October 2014 to May 2016 into three arms. Women who did not have BV (Group 1, n = 13) self-administered probiotic capsules vaginally once daily for 30 days, then once a week until Day 190. Women diagnosed with BV were randomized into Group 2 (n = 12) or Group 3 (n = 14) and treated with the triple oral antibiotic combination for vaginal discharge syndrome per South African guidelines (cefixime 400 mg stat, doxycycline 100 mg BD for 7 days and metronidazole 2 g stat). Immediately after antibiotic treatment, women in Group 2 self-administered probiotic capsules vaginally once daily for 30 days then vaginally once a week until Day 190. Women in Group 3 were not given lactobacilli.ResultsDuring the study, L. rhamnosus DSM 14870 or L. gasseri DSM 14869, were isolated in 5/13 (38.5%) women in Group 1 compared to 10/12 (83.3%) women in Group 2 (p = 0.041). The 1-month and 6-month BV cure rates were similar (P >  0.05) between Group 2 (42 and 25%) compared to Group 3 (36 and 25%). In Group 2, no correlation was observed between the frequency of isolation of the two Lactobacillus strains and the 1-month or 6-month cure rate.ConclusionsSupplementation with vaginal probiotic capsules resulted in colonisation of the vagina by the Lactobacillus strains (L. rhamnosus DSM 14870 and L. gasseri DSM 14869) contained in the capsules. We observed low initial cure rates of BV after a stat dose of metronidazole and that the probiotic did not improve BV cure rates or alleviate recurrence which could be due to treatment failure or very limited power of the study.
  •  
7.
  • Marcotte, Harold, et al. (författare)
  • Characterization and complete genome sequences of L. rhamnosus DSM 14870 and L-gasseri DSM 14869 contained in the EcoVag (R) probiotic vaginal capsules
  • 2017
  • Ingår i: Microbiological Research. - : ELSEVIER GMBH, URBAN & FISCHER VERLAG. - 0944-5013 .- 1618-0623. ; 205, s. 88-98
  • Tidskriftsartikel (refereegranskat)abstract
    • Lactobacillus rhamnosus DSM 14870 and Lactobacillus gasseri DSM 14869 were previously isolated from the vaginal epithelial cells (VEC) of healthy women and selected for the development of the vaginal EcoVag (R) probiotic capsules. EcoVag (R) was subsequently shown to provide long-term cure and reduce relapse of bacterial vaginosis (BV) as an adjunct to antibiotic therapy. To identify genes potentially involved in probiotic activity, we performed genome sequencing and characterization of the two strains. The complete genome analysis of both strains revealed the presence of genes encoding functions related to adhesion, exopolysaccharide (EPS) biosynthesis, antimicrobial activity, and CRISPR adaptive immunity but absence of antibiotic resistance genes. Interesting features of L. rhamnosus DSM 14870 genome include the presence of the spaCBA-srtC gene encoding spaCBA pill and interruption of the gene cluster encoding long galactose-rich EPS by integrases. Unique to L. gasseri DSM 14869 genome was the presence of a gene encoding a putative (1456 amino acid) new adhesin containing two rib/alpha-like repeats. L. rhamnosus DSM 14870 and L. gasseri DSM 14869 showed acidification of the culture medium (to pH 3.8) and a strong adhesion capability to the Caco-2 cell line and VEC. L gasseri DSM 14869 could produce a thick (40 nor) EPS layer and hydrogen peroxide. L. rhamnosus DSM 14870 was shown to produce SpaCBA pili and a 20 nor EPS layer, and could inhibit the growth of Gardnerella vaginalis, a bacterium commonly associated with BV. The genome sequences provide a basis for further elucidation of the molecular basis for their probiotic functions.
  •  
8.
  • Marcotte, Harold, et al. (författare)
  • Conversion of monoclonal IgG to dimeric and secretory IgA restores neutralizing ability and prevents Infection of Omicron lineages
  • 2024
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : NATL ACAD SCIENCES. - 0027-8424 .- 1091-6490. ; 121:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The emergence of Omicron lineages and descendent subvariants continues to present a severe threat to the effectiveness of vaccines and therapeutic antibodies. We have previ- ously suggested that an insufficient mucosal immunoglobulin A (IgA) response induced by the mRNA vaccines is associated with a surge in breakthrough infections. Here, we further show that the intramuscular mRNA and/or inactivated vaccines cannot suffi- ciently boost the mucosal secretory IgA response in uninfected individuals, particu- larly against the Omicron variant. We thus engineered and characterized recombinant monomeric, dimeric, and secretory IgAl antibodies derived from four neutralizing IgG monoclonal antibodies (mAbs 01A05, rmAb23, DXP-604, and XG014) targeting the receptor-binding domain of the spike protein. Compared to their parental IgG antibod- ies, dimeric and secretory IgAl antibodies showed a higher neutralizing activity against different variants of concern (VOCs), in part due to an increased avidity. Importantly, the dimeric or secretory IgAl form of the DXP-604 antibody significantly outperformed its parental IgG antibody, and neutralized the Omicron lineages BA.1, BA.2, and BA.4/5 with a 25- to 75-fold increase in potency. In human angiotensin converting enzyme 2 (ACE2) transgenic mice, a single intranasal dose of the dimeric IgA DXP-604 conferred prophylactic and therapeutic protection against Omicron BA.5. Thus, dimeric or secre- tory IgA delivered by nasal administration may potentially be exploited for the treatment Iand prevention of Omicron infection, thereby providing an alternative tool for combating immune evasion by the current circulating subvariants and, potentially, future VOCs.
  •  
9.
  • Marcotte, Harold, et al. (författare)
  • Immunity to SARS-CoV-2 up to 15 months after infection
  • 2022
  • Ingår i: iScience. - : Elsevier BV. - 2589-0042. ; 25:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Information concerning the longevity of immunity to SARS-CoV-2 following natural infection may have considerable implications for durability of immunity induced by vaccines. Here, we monitored the SARS-CoV-2 specific immune response in COVID-19 patients followed up to 15 months after symptoms onset. Following a peak at day 15-28 postinfection, the IgG antibody response and plasma neutralizing titers gradually decreased over time but stabilized after 6 months. Compared to G614, plasma neutralizing titers were more than 8-fold lower against variants Beta, Gamma, and Delta. SARS-CoV-2-specific memory B and T cells persisted in the majority of patients up to 15 months although a significant decrease in specific T cells, but not B cells, was observed between 6 and 15 months. Antiviral specific immunity, especially memory B cells in COVID-19 convalescent patients, is long-lasting, but some variants of concern may at least partially escape the neutralizing activity of plasma antibodies.
  •  
10.
  • Mogensen, Ida, et al. (författare)
  • Lung function before and after COVID-19 in young adults : A population-based study.
  • 2022
  • Ingår i: The journal of allergy and clinical immunology. Global. - : University of Wisconsin Press. - 2772-8293. ; 1:2, s. 37-42
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: There is limited evidence on the long-term impact of mild-to-moderate coronavirus disease 2019 (COVID-19) on lung function among young adults.OBJECTIVES: We aimed to assess whether COVID-19 has a negative impact on lung function in young adults and whether asthma, allergic sensitization, or use of inhaled corticosteroids (ICSs) modifies a potential association.METHODS: Participants from the population-based BAMSE (Barn, Allergi, Miljö, Stockholm, Epidemiologi) cohort with spirometry assessed before (2016-2019) and after onset of the COVID-19 pandemic (2020-2021) were included. Serum levels of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor-binding domain-specific IgG, IgM, and/or IgA (determined with ELISA) defined seropositivity. Mean change in lung function (ie, change in FEV1, forced vital capacity [FVC], and FEV1/FVC ratio expressed as percent of predicted [pp]) from before to after onset of the pandemic were compared between the seronegative and seropositive participants. In seropositive participants, change in lung function was assessed in relation to allergic sensitization and self-reported ICS use.RESULTS: Of the 853 included participants, 29% (n = 243) were seropositive. There were no differences in change in lung function between the seronegative and seropositive participants (for mean change in FEV1 pp [SD], seropositivity = 0.87% [4.79%] and seronegativity = 1.03% (4.76%) [P = .66] for difference using a t test; FVC pp (SD), seropositivity = 1.34% (4.44%) and seronegativity = 1.29% (4.27%) [P = .87]; and for FEV1/FVC pp (SD), seropositivity = -0.25% (3.13%) and seronegativity = -0.13% (3.15%) [P = .61]). Similar results were observed among participants with asthma (n = 147 [17%]). Among seropositive participants, allergic sensitization or ICS use did not influence lung function.CONCLUSION: We found no evidence of mild-to-moderate COVID-19 affecting lung function long term in a population-based cohort of young adults. Moreover, neither asthma nor allergic sensitization nor ICS use affected the results.
  •  
11.
  • Sigurlásdóttir, Sara, et al. (författare)
  • Deletion of D-Lactate Dehydrogenase A in Neisseria meningitidis Promotes Biofilm Formation Through Increased Autolysis and Extracellular DNA Release
  • 2019
  • Ingår i: Frontiers in Microbiology. - : Frontiers Media SA. - 1664-302X. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Neisseria meningitidis is a Gram-negative bacterium that asymptomatically colonizes the human nasopharyngeal mucosa. Pilus-mediated initial adherence of N. meningitidis to the epithelial mucosa is followed by the formation of three-dimensional aggregates, called microcolonies. Dispersal from microcolonies contributes to the transmission of N. meningitidis across the epithelial mucosa. We have recently discovered that environmental concentrations of host cell-derived lactate influences N. meningitidis microcolony dispersal. Here, we examined the ability of N. meningitidis mutants deficient in lactate metabolism to form biofilms. A lactate dehydrogenease A (idhA) mutant had an increased level of biofilm formation. Deletion of IdhA increased the N. meningitidis cell surface hydrophobicity and aggregation. In this study, we used FAM20, which belongs to clonal complex ST-11 that forms biofilms independently of extracellular DNA (eDNA). However, treatment with DNase I abolished the increased biofilm formation and aggregation of the ldhA-delicient mutant, suggesting a critical role for eDNA. Compared to wild-type, the IdhA-deficient mutant exhibited an increased autolytic rate, with significant increases in the eDNA concentrations in the culture supernatants and in biofilms. Within the IdhA mutant biofilm, the transcription levels of the capsule, pilus, and bacterial lysis genes were downregulated, while norB, which is associated with anaerobic respiration, was upregulated. These findings suggest that the absence of IdhA in N. meningitidis promotes biofilm formation and aggregation through autolysis-mediated DNA release.
  •  
12.
  • Sigurlásdóttir, Sara, et al. (författare)
  • Lactate-Induced Dispersal of Neisseria meningitidis Microcolonies Is Mediated by Changes in Cell Density and Pilus Retraction and Is Influenced by Temperature Change
  • 2021
  • Ingår i: Infection and Immunity. - 0019-9567 .- 1098-5522. ; 89:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Neisseria meningitidis is the etiologic agent of meningococcal meningitis and sepsis. Initial colonization of meningococci in the upper respiratory tract epithelium is crucial for disease development. The colonization occurs in several steps and expression of type IV pili (Tfp) is essential for both attachment and microcolony formation of encapsulated bacteria. Previously, we have shown that host-derived lactate induces synchronized dispersal of meningococcal microcolonies. In this study, we demonstrated that lactate-induced dispersal is dependent on bacterial concentration but not on the quorum-sensing system autoinducer-2 or the two-component systems NarP/NarQ, PilR/PilS, NtrY/NtrX, and MisR/MisS. Further, there were no changes in expression of genes related to assembly, elongation, retraction, and modification of Tfp throughout the time course of lactate induction. By using pilT and pptB mutants, however, we found that lactate-induced dispersal was dependent on PilT retraction but not on phosphoglycerol modification of Tfp even though the PptB activity was important for preventing reaggregation postdispersal. Furthermore, protein synthesis was required for lactate-induced dispersal. Finally, we found that at a lower temperature, lactate-induced dispersal was delayed and unsynchronized, and bacteria reformed microcolonies. We conclude that lactate-induced microcolony dispersal is dependent on bacterial concentration, PilT-dependent Tfp retraction, and protein synthesis and is influenced by environmental temperature.
  •  
13.
  • Somiah, Tanvi, et al. (författare)
  • Lactate causes downregulation of Helicobacter pylori adhesin genes sabA and labA while dampening the production of proinflammatory cytokines
  • 2022
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic inflammation induced by Helicobacter pylori is strongly associated with gastric cancer development, which is influenced by both bacterial virulence and host genetics. The sialic acid-binding adhesin SabA and the MUC5AC-binding adhesin LabA are important H. pylori virulence factors that facilitate adhesion of the bacterium, which is a crucial step in colonization. Lactate utilization has been reported to play a key role in the pathogenicity of different bacterial species. However, this is poorly understood in H. pylori. In this study, we investigated the effect of lactate on H. pylori adhesin gene expression and the regulation of host inflammatory cytokines. We show that the bacterial adhesins SabA and LabA were downregulated at the transcriptional level during incubation of H. pylori with lactate. Downregulation of sabA required the involvement of the two-component system ArsRS, while labA was regulated via the CheA/CheY system, indicating differences in the regulation of these genes in response to lactate. The levels of the proinflammatory cytokines TNF and IL-6 in H. pylori-stimulated macrophages were reduced when lactate was present. Interestingly, glucose did not prevent the secretion of these cytokines. Taken together, our data suggest that lactate affects H. pylori adhesin gene expression and the host response upon infection.
  •  
14.
  • Syrén, Per-Olof, et al. (författare)
  • Design, structure and plasma binding of ancestral β-CoV scaffold antigens
  • 2024
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • The pandemic caused by Severe acute respiratory syndrome coronavirus 2 has had devastating consequences on global health and economy. Despite the success of vaccination campaigns emerging variants are of concern and novel viruses with the potential to drive future pandemics are circulating in nature. Development of vaccines can be challenging, as key viral protein antigens can be unstable or aggregate. In this study, we present the application of ancestral sequence reconstruction on coronavirus spike protein, resulting in stable and highly soluble ancestral scaffold antigens (AnSAs). The AnSAs interacted with plasma of patients recovered from COVID-19 but did not bind to the human angiotensin-converting enzyme 2 (ACE2) receptor. Cryo-EM analysis of the AnSAs yielded high resolution structures (2.6-2.8 Å) indicating a closed pre-fusion conformation in which all three receptor-binding domains (RBDs) are facing downwards. This captured closed state is stabilised by an intricate hydrogen‑bonding network mediated by well-resolved loops, both within and across monomers, tethering the N‑terminal domain and RBD together, which determines their relative spatial orientation. Finally, we show how AnSAs are potent scaffolds by replacing the ancestral RBD with the Wuhan wild-type sequence, which restored ACE2 binding and increased the interaction with convalescent plasma. In contrast to rational antigen design depending on prior structural knowledge, our work highlights how stable and potentially interesting antigens can be generated using exclusively available sequence information.
  •  
15.
  • Zuo, Fanglei, et al. (författare)
  • Advancing mechanistic understanding and bioengineering of probiotic lactobacilli and bifidobacteria by genome editing
  • 2021
  • Ingår i: Current Opinion in Biotechnology. - : Elsevier BV. - 0958-1669 .- 1879-0429. ; 70, s. 75-82
  • Forskningsöversikt (refereegranskat)abstract
    • Typical traditional probiotics lactobacilli and bifidobacteria are gaining great interest to be developed as living diagnostics and therapeutics for improving human health. However, the mechanistic basis underlying their inherent health beneficial property remain incompletely understood which can slow down the translational pipeline in the functional food and pharmaceutical field. Efficient genome editing will advance the understanding of the molecular mechanism of the probiotics' physiological properties and their interaction with the host and the host microbiota, thereby further promote the development of next-generation designer probiotics with improved robustness and tailored functionalities. With the expansion of genome editing strategies such as CRISPR-Cas-based tools and IPSD assisted genome engineering as well as other synthetic biology technologies, the research and application of these health-promoting bacteria for the food and pharmaceutical industry will be further enhanced.
  •  
16.
  • Zuo, Fanglei, et al. (författare)
  • Engineer probiotic bifidobacteria for food and biomedical applications - Current status and future prospective
  • 2020
  • Ingår i: Biotechnology Advances. - : Elsevier BV. - 0734-9750 .- 1873-1899. ; 45
  • Forskningsöversikt (refereegranskat)abstract
    • Bifidobacteria are members of the human gut microbiota and have shown to exert beneficial effects on their host. Certain strains have a long history of safe and effective use as probiotics. Due to the lack of efficient genetic tools, however, little is known about the molecular mechanisms on which these health-promoting properties are based, thus limiting the synthetic biology applications in bifidobacteria. Here, we discuss the recent development of genetic tools and their engagement in engineering bifidobacteria for food and biomedical applications, from eliminating antibiotic resistance mobile elements and improving robustness to preventing pathogen infections and delivering therapeutics for cancer treatment. In addition, we highlight the application of emerging genome engineering techniques for manipulating the bifidobacterial genome. Finally, we provide our perspective on the future development of synthetic biology techniques and programmed probiotic bifidobacteria with enhanced robustness and designer functionalities.
  •  
17.
  • Zuo, Fanglei, et al. (författare)
  • Heterologous immunization with inactivated vaccine followed by mRNA-booster elicits strong immunity against SARS-CoV-2 Omicron variant
  • 2022
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The recent emergence of the Omicron variant has raised concerns on vaccine efficacy and the urgent need to study more efficient vaccination strategies. Here we observed that an mRNA vaccine booster in individuals vaccinated with two doses of inactivated vaccine significantly increased the plasma level of specific antibodies that bind to the receptor-binding domain (RBD) or the spike (S) ectodomain (S1 + S2) of both the G614 and the Omicron variants, compared to two doses of homologous inactivated vaccine. The level of RBD- and S-specific IgG antibodies and virus neutralization titers against variants of concern in the heterologous vaccination group were similar to that in individuals receiving three doses of homologous mRNA-vaccine or a boost of mRNA vaccine after infection, but markedly higher than that in individuals receiving three doses of a homologous inactivated vaccine. This heterologous vaccination regime furthermore significantly enhanced the RBD-specific memory B cell response and S1-specific T cell response, compared to two or three doses of homologous inactivated vaccine. Our study demonstrates that mRNA vaccine booster in individuals vaccinated with inactivated vaccines can be highly beneficial, as it markedly increases the humoral and cellular immune responses against the virus, including the Omicron variant.
  •  
18.
  • Zuo, Fanglei, et al. (författare)
  • Lactobacilli Downregulate Transcription Factors in Helicobacter pylori That Affect Motility, Acid Tolerance and Antimicrobial Peptide Survival
  • 2022
  • Ingår i: International Journal of Molecular Sciences. - : MDPI AG. - 1661-6596 .- 1422-0067. ; 23:24
  • Tidskriftsartikel (refereegranskat)abstract
    • Helicobacter pylori infection triggers inflammation that may lead to gastritis, stomach ulcers and cancer. Probiotic bacteria, such as Lactobacillus, have been of interest as treatment options, however, little is known about the molecular mechanisms of Lactobacillus-mediated inhibition of H. pylori pathogenesis. In this work, we investigated the effect of Lactobacillus culture supernatants, so-called conditioned medium (CM), from two gastric isolates, L. gasseri and L. oris, on the expression of transcriptional regulators in H. pylori. Among the four known two-component systems (TCSs), i.e., ArsRS, FlgRS, CheAY and CrdRS, the flagellar regulator gene flgR and the acid resistance associated arsS gene were down-regulated by L. gasseri CM, whereas expression of the other TCS-genes remained unaffected. L. gasseri CM also reduced the motility of H. pylori, which is in line with reduced flgR expression. Furthermore, among six transcription factors of H. pylori only the ferric uptake regulator gene fur was regulated by L. gasseri CM. Deletion of fur further led to dramatically increased sensitivity to the antimicrobial peptide LL-37. Taken together, the results highlight that released/secreted factors of some lactobacilli, but not all, downregulate transcriptional regulators involved in motility, acid tolerance and LL-37 sensitivity of H. pylori.
  •  
19.
  • Zuo, Fanglei, et al. (författare)
  • Role of Sortase A in Lactobacillus gasseri Kx110A1 Adhesion to Gastric Epithelial Cells and Competitive Exclusion of Helicobacter pylori
  • 2019
  • Ingår i: Frontiers in Microbiology. - : Frontiers Media SA. - 1664-302X. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • We have previously shown that Lactobacillus gasseri Kx110A1, a human stomach isolate, can colonize mouse stomach and reduce the initial colonization of Helicobacter pylori. Here, we investigated the role of sortase-dependent proteins (SDPs) involved in these functions by the construction of a mutant for srtA, the gene encoding the housekeeping sortase that covalently anchors SDPs to the cell surface. The srtA mutant showed a decrease in hydrophobicity and autoaggregation under acidic conditions, indicating the effect of SDPs on cell surface properties. Correspondingly, the srtA mutant lost the capacity to adhere to gastric epithelial cells, thus resulting in an inability to provide a physical barrier to prevent H. pylori adherence. These results indicate that sortase A is a key determinant of the cell surface properties of L. gasseri Kx110A1 and contributes to Lactobacillus-mediated exclusion of H. pylori. Understanding the molecular mechanisms by which lactobacilli antagonize H. pylori might contribute to the development of novel therapeutic strategies that take advantage of health-promoting bacteria and reduce the burden of antibiotic resistance.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-19 av 19
Typ av publikation
tidskriftsartikel (16)
forskningsöversikt (2)
annan publikation (1)
Typ av innehåll
refereegranskat (18)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Zuo, Fanglei (19)
Marcotte, Harold (13)
Du, Likun (10)
Hammarström, Lennart (8)
Pan-Hammarström, Qia ... (8)
Abolhassani, Hassan (6)
visa fler...
Andréll, Juni (5)
Jonsson, Ann-Beth (5)
Rezaei, Nima (4)
Wang, Yating (4)
Landegren, Nils, 198 ... (3)
Bastard, Paul (3)
Aranda-Guillen, Mari ... (3)
Zhang, Shen-Ying (3)
Zhang, Qian (3)
Casanova, Jean-Laure ... (3)
Hammarstrom, Lennart (3)
Wan, Hui (3)
Hust, Michael (3)
Sun, Rui (3)
Calzolai, Luigi (3)
Vlachiotis, Stelios (3)
Cassaniti, Irene (3)
Piralla, Antonio (3)
Delavari, Samaneh (2)
Modaresi, Mohammadre ... (2)
Vosughimotlagh, Ahma ... (2)
Kämpe, Olle (2)
Sardh, Fabian (2)
Pan-Hammarstrom, Qia ... (2)
Melén, Erik (2)
Larsson, Per-Göran (2)
Persson, Helena (2)
Syrén, Per-Olof (2)
Kull, Inger (2)
Ekström, Sandra (2)
Georgelis, Antonios (2)
Bergström, Anna (2)
Ohlin, Mats (2)
Björkander, Sophia (2)
Sherina, Natalia (2)
Kumagai-Braesch, Mak ... (2)
Sigurlásdóttir, Sara (2)
Somiah, Tanvi (2)
Schriever, Karen (2)
Hofström, Camilla (2)
Hueting, David A. (2)
Walldén, Karin (2)
Brandsborg, Erik (2)
Sammartino, Jose Cam ... (2)
visa färre...
Lärosäte
Karolinska Institutet (15)
Stockholms universitet (11)
Uppsala universitet (4)
Linköpings universitet (3)
Kungliga Tekniska Högskolan (2)
Lunds universitet (1)
Språk
Engelska (19)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (14)
Naturvetenskap (6)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy