SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(de Jongste Johan C) "

Sökning: WFRF:(de Jongste Johan C)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Sonnenschein-van der Voort, Agnes M. M, et al. (författare)
  • Preterm birth, infant weight gain, and childhood asthma risk: A meta-analysis of 147,000 European children
  • 2014
  • Ingår i: Journal of Allergy and Clinical Immunology. - : Elsevier. - 0091-6749 .- 1097-6825. ; 133:5, s. 1317-1329
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Preterm birth, low birth weight, and infant catch-up growth seem associated with an increased risk of respiratory diseases in later life, but individual studies showed conflicting results. Objectives: We performed an individual participant data meta-analysis for 147,252 children of 31 birth cohort studies to determine the associations of birth and infant growth characteristics with the risks of preschool wheezing (1-4 years) and school-age asthma (5-10 years). Methods: First, we performed an adjusted 1-stage random-effect meta-analysis to assess the combined associations of gestational age, birth weight, and infant weight gain with childhood asthma. Second, we performed an adjusted 2-stage random-effect meta-analysis to assess the associations of preterm birth (gestational age less than 37 weeks) and low birth weight (less than 2500 g) with childhood asthma outcomes. Results: Younger gestational age at birth and higher infant weight gain were independently associated with higher risks of preschool wheezing and school-age asthma (P less than. 05). The inverse associations of birth weight with childhood asthma were explained by gestational age at birth. Compared with term-born children with normal infant weight gain, we observed the highest risks of school-age asthma in children born preterm with high infant weight gain (odds ratio [OR], 4.47; 95% CI, 2.58-7.76). Preterm birth was positively associated with an increased risk of preschool wheezing (pooled odds ratio [pOR], 1.34; 95% CI, 1.25-1.43) and school-age asthma (pOR, 1.40; 95% CI, 1.18-1.67) independent of birth weight. Weaker effect estimates were observed for the associations of low birth weight adjusted for gestational age at birth with preschool wheezing (pOR, 1.10; 95% CI, 1.00-1.21) and school-age asthma (pOR, 1.13; 95% CI, 1.01-1.27). Conclusion: Younger gestational age at birth and higher infant weight gain were associated with childhood asthma outcomes. The associations of lower birth weight with childhood asthma were largely explained by gestational age at birth.
  •  
2.
  • van Meel, Evelien R., et al. (författare)
  • Early-life respiratory tract infections and the risk of school-age lower lung function and asthma: a meta-analysis of 150 000 European children
  • 2022
  • Ingår i: European Respiratory Journal. - : EUROPEAN RESPIRATORY SOC JOURNALS LTD. - 0903-1936 .- 1399-3003. ; 60:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Early-life respiratory tract infections might affect chronic obstructive respiratory diseases, but conclusive studies from general populations are lacking. Our objective was to examine if children with early-life respiratory tract infections had increased risks of lower lung function and asthma at school age. Methods We used individual participant data of 150 090 children primarily from the EU Child Cohort Network to examine the associations of upper and lower respiratory tract infections from age 6 months to 5 years with forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC), FEV1/FVC, forced expiratory flow at 75% of FVC (FEF75%) and asthma at a median (range) age of 7 (4-15) years. Results Children with early-life lower, not upper, respiratory tract infections had a lower school-age FEV1, FEV1/FVC and FEF75% (z-score range: -0.09 (95% CI -0.14- -0.04) to -0.30 (95% CI -0.36- -0.24)). Children with early-life lower respiratory tract infections had a higher increased risk of school-age asthma than those with upper respiratory tract infections (OR range: 2.10 (95% CI 1.98-2.22) to 6.30 (95% CI 5.64-7.04) and 1.25 (95% CI 1.18-1.32) to 1.55 (95% CI 1.47-1.65), respectively). Adjustment for preceding respiratory tract infections slightly decreased the strength of the effects. Observed associations were similar for those with and without early-life wheezing as a proxy for early-life asthma. Conclusions Our findings suggest that early-life respiratory tract infections affect development of chronic obstructive respiratory diseases in later life, with the strongest effects for lower respiratory tract infections.
  •  
3.
  • van der Valk, Ralf J P, et al. (författare)
  • A novel common variant in DCST2 is associated with length in early life and height in adulthood.
  • 2015
  • Ingår i: Human molecular genetics. - : Oxford University Press (OUP). - 1460-2083 .- 0964-6906. ; 24:4, s. 1155-68
  • Tidskriftsartikel (refereegranskat)abstract
    • Common genetic variants have been identified for adult height, but not much is known about the genetics of skeletal growth in early life. To identify common genetic variants that influence fetal skeletal growth, we meta-analyzed 22 genome-wide association studies (Stage 1; N = 28 459). We identified seven independent top single nucleotide polymorphisms (SNPs) (P < 1 × 10(-6)) for birth length, of which three were novel and four were in or near loci known to be associated with adult height (LCORL, PTCH1, GPR126 and HMGA2). The three novel SNPs were followed-up in nine replication studies (Stage 2; N = 11 995), with rs905938 in DC-STAMP domain containing 2 (DCST2) genome-wide significantly associated with birth length in a joint analysis (Stages 1 + 2; β = 0.046, SE = 0.008, P = 2.46 × 10(-8), explained variance = 0.05%). Rs905938 was also associated with infant length (N = 28 228; P = 5.54 × 10(-4)) and adult height (N = 127 513; P = 1.45 × 10(-5)). DCST2 is a DC-STAMP-like protein family member and DC-STAMP is an osteoclast cell-fusion regulator. Polygenic scores based on 180 SNPs previously associated with human adult stature explained 0.13% of variance in birth length. The same SNPs explained 2.95% of the variance of infant length. Of the 180 known adult height loci, 11 were genome-wide significantly associated with infant length (SF3B4, LCORL, SPAG17, C6orf173, PTCH1, GDF5, ZNFX1, HHIP, ACAN, HLA locus and HMGA2). This study highlights that common variation in DCST2 influences variation in early growth and adult height.
  •  
4.
  • Gehring, Ulrike, et al. (författare)
  • Air Pollution Exposure and Lung Function in Children : The ESCAPE Project
  • 2013
  • Ingår i: Journal of Environmental Health Perspectives. - : Environmental Health Perspectives. - 0091-6765 .- 1552-9924. ; 121:11-12, s. 1357-1364
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: There is evidence for adverse effects of outdoor air pollution on lung function of children. Quantitative summaries of the effects of air pollution on lung function, however, are lacking due to large differences among studies. OBJECTIVES: We aimed to study the association between residential exposure to air pollution and lung function in five European birth cohorts with a standardized exposure assessment following a common protocol. METHODS: As part of the European Study of Cohorts for Air Pollution Effects (ESCAPE) we analyzed data from birth cohort studies situated in Germany, Sweden, the Netherlands, and the United Kingdom that measured lung function at 6-8 years of age (n = 5,921). Annual average exposure to air pollution [nitrogen oxides (NO2, NOx), mass concentrations of particulate matter with diameters < 2.5, < 10, and 2.5-10 mu m (PM2.5, PM10, and PMcoarse), and PM2.5 absorbance] at the birth address and current address was estimated by land-use regression models. Associations of lung function with estimated air pollution levels and traffic indicators were estimated for each cohort using linear regression analysis, and then combined by random effects meta-analysis. RESULTS: Estimated levels of NO2, NOx, PM2.5 absorbance, and PM2.5 at the current address, but not at the birth address, were associated with small decreases in lung function. For example, changes in forced expiratory volume in 1 sec (FEV1) ranged from -0.86% (95% CI: -1.48, -0.24%) for a 20-mu g/m(3) increase in NOx to -1.77% (95% CI: -3.34, -0.18%) for a 5-mu g/m(3) increase in PM2.5. CONCLUSIONS: Exposure to air pollution may result in reduced lung function in schoolchildren.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy