SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(de Vries Renko) "

Sökning: WFRF:(de Vries Renko)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gernandt, Jonas, 1982- (författare)
  • On the phase behaviour of hydrogels : A theory of macroion-induced core/shell equilibrium
  • 2013
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Colloidal macroions are known to interact very strongly with oppositely charged polyionic hydrogels. Sometimes this results in a non-uniform distribution of the macroions within the gel, a phenomenon that is not fully understood. This thesis is a summary of four papers on the development of a theory of the thermodynamics of macroions interacting with hydrogels, aimed at explaining the phenomenon of core/shell separation in spherical gels. It is the first theory of such interactions to use a rigorous approach to whole-gel mechanics, in which the elastic interplay between different parts of the gel is treated explicitly.The thesis shows that conventional theories of elasticity, earlier used on gels in pure solvent, can be generalised to apply also to gels in complex fluids, and that the general features of the phase behaviour are the same if mapped to corresponding system variables. It is found that the emergence of shells is due to attractions between macroions in the gel, mediated by polyions. Since the shell state is unfavourable from the perspective of the shell itself, being deformed from its preferred state, there will be a hysteresis between the uptake and the release of the macroion, like already known to occur with the uptake and release of pure solvent.Due to the elastic interplay, growth of the shell makes further growth progressively more favourable. Thus, unless there is a limited amount of macroions available the system will not reach equilibrium until complete phase transition has taken place. If the amount is limited the core/shell separation can be in equilibrium, so the volume of the solution that the gel is in contact with plays a very important part in determining the thermodynamic resting point of the system. The ability of a macroion/hydrogel to phase separate thus depends on the molecular properties whereas the ultimate fate of such a separation depends on the proportions in number between the ingoing components.
  •  
2.
  • Nilebäck, Linnea (författare)
  • Expanded knowledge on silk assembly for development of bioactive silk coatings
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Silk is a fascinating natural material made from proteins that self-assemble through structural rearrangements into one of the toughest materials known. As silk is protein-based, durable and elastic, it has many features that makes it suitable as a scaffold material for tissue engineering. Natural silk proteins are complex and thus difficult to produce synthetically. Therefore, partial silk proteins have been designed for production in heterologous host cells such as expression strains of Escherichia coli. This thesis presents investigations of the properties of one such partial spider silk protein, 4RepCT, and its assembly process, and describes the development of bioactive silk coatings and their properties. The focus has been to develop coatings for implant surfaces to prevent infections and improve interactions with cells.In Paper I, the intrinsic properties and contribution to the self-assembly process of the two protein parts 4Rep and CT were investigated separately, in a mixture (4Rep+CT) and as a fusion protein (4RepCT). The results showed that assembly occurs both at the liquid-air and liquid-solid interfaces. CT reached the interface fast but did not refold to form β-sheets, characteristic for silk, on its own. 4Rep adsorbed rapidly, and extensive intermolecular interactions were formed, although unorganized. Covalent linkage between 4Rep and CT, as in 4RepCT, and thus close proximity between the two silk parts, was found to be crucial in order to obtain both conversion into β-sheet rich structures and a nanofibrillar topography of the adsorbed proteins.The finding that 4RepCT self-assembles into nanofibrillar coatings on solid surfaces could be useful for various applications, for example to improve implant surfaces. The coating process was thus further evaluated in Paper II, showing that the silk coatings were chemically resistant and could also be made from silk protein variants where additional peptide motifs had been fused to 4RepCT at the genetic level. Silk with a cell-binding motif (FN-silk) and an antimicrobial peptide (Mag-silk) could assemble onto titanium, stainless steel and hydroxyapatite, respectively, materials that are commonly used for implants. Fibroblasts and endothelial cells were successfully cultured on FN-silk coatings and proliferated well. Finally, coatings of Mag-silk were evaluated for their ability to prevent adhesion of Staphylococcus aureus.In Paper III, silk from silkworms were used to construct materials in three different formats suitable for wound healing applications. Microporous scaffolds, electrospun mats and thin coatings of silkworm silk could all be coated with 4RepCT. They thereby gained the functions added via 4RepCT fusion proteins with a cell-binding motif (FN-silk), an antibody binding domain (Z-silk) or an enzyme (Xyl-silk). This shows upon a versatile method for functionalization of materials in different formats with bioactive motifs and domains.In Paper IV, the aim was to develop dual-functional silk coatings to promote osseointegration and prevent bacterial adhesion to orthopedic and dental implants. Coatings of regular silk (4RepCT) and FN-silk were given additional functions by using the transpeptidase Sortase A to mediate conjugation with the biofilm dispersal enzyme Dispersin B, or the endolysins PlySs2 and SAL-1. The obtained coatings showed a reduced adhesion of S. aureus compared to regular silk and FN-silk. Moreover, osteosarcoma cells adhered and proliferated well on coatings of FN-silk also when conjugated with enzymes.Altogether, the work presented in this thesis suggests that 4RepCT silk coatings are valuable as a base for construction of bioactive surfaces. The coatings can be applied on many different surfaces, and the bioactive coatings developed herein show potential for wound healing applications and prevention of biomaterial-associated infections.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy