SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(van Pelt Ward) "

Sökning: WFRF:(van Pelt Ward)

  • Resultat 1-49 av 49
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Noël, Brice, et al. (författare)
  • Low elevation of Svalbard glaciers drives high mass loss variability
  • 2020
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 11:4597
  • Tidskriftsartikel (refereegranskat)abstract
    • Compared to other Arctic ice masses, Svalbard glaciers are low-elevated with flat interior accumulation areas, resulting in a marked peak in their current hypsometry (area-elevation distribution) at  ~450 m above sea level. Since summer melt consistently exceeds winter snowfall, these low-lying glaciers can only survive by refreezing a considerable fraction of surface melt and rain in the porous firn layer covering their accumulation zones. We use a high-resolution climate model to show that modest atmospheric warming in the mid-1980s forced the firn zone to retreat upward by  ~100 m to coincide with the hypsometry peak. This led to a rapid areal reduction of firn cover available for refreezing, and strongly increased runoff from dark, bare ice areas, amplifying mass loss from all elevations. As the firn line fluctuates around the hypsometry peak in the current climate, Svalbard glaciers will continue to lose mass and show high sensitivity to temperature perturbations.
  •  
2.
  • van Pelt, Ward, et al. (författare)
  • Simulating melt, runoff and refreezing on Nordenskiöldbreen, Svalbard, using a coupled snow and energy balance model
  • 2012
  • Ingår i: The Cryosphere. - : Copernicus GmbH. - 1994-0416 .- 1994-0424. ; 6:3, s. 641-659
  • Tidskriftsartikel (refereegranskat)abstract
    • A distributed energy balance model is coupled to a multi-layer snow model in order to study the mass balance evolution and the impact of refreezing on the mass budget of Nordenskioldbreen, Svalbard. The model is forced with output from the regional climate model RACMO and meteorological data from Svalbard Airport. Extensive calibration and initialisation are performed to increase the model accuracy. For the period 1989-2010, we find a mean net mass balance of -0.39 m w.e. a(-1). Refreezing contributes on average 0.27 m w.e. a(-1) to the mass budget and is most pronounced in the accumulation zone. The simulated mass balance, radiative fluxes and subsurface profiles are validated against observations and are generally in good agreement. Climate sensitivity experiments reveal a non-linear, seasonally dependent response of the mass balance, refreezing and runoff to changes in temperature and precipitation. It is shown that including seasonality in climate change, with less pronounced summer warming, reduces the sensitivity of the mass balance and equilibrium line altitude (ELA) estimates in a future climate. The amount of refreezing is shown to be rather insensitive to changes in climate.
  •  
3.
  • Bertrand, Philip, et al. (författare)
  • Feeding at the front line : interannual variation in the use of glacier fronts by foraging black-legged kittiwakes
  • 2021
  • Ingår i: Marine Ecology Progress Series. - : Inter-Research Science Center. - 0171-8630 .- 1616-1599. ; 677, s. 197-208
  • Tidskriftsartikel (refereegranskat)abstract
    • Tidewater glacier fronts can represent important foraging areas for Arctic predators. Their ecological importance is likely to change in a warmer Arctic. Their profitability and use by consumers are expected to vary in time, but the underlying mechanisms driving such variation remain poorly known. The subglacial plume, originating from meltwater discharge, is responsible for the entrainment and transport of zooplankton to the surface, making them more readily available for surface-feeding seabirds. Both discharge and zooplankton abundance are known to fluctuate in time and are thus expected to modulate the foraging profitability of glacier fronts. This study tested the predictions that annual use of glacier fronts by black-legged kittiwakes Rissa tridactyla is positively related to the average glacier discharge and prey biomass in the fjord. To do this, we combined a multiyear dataset of environmental drivers and GPS tracks of birds in Kongsfjorden, Svalbard. Our results confirmed the interannual variation in the use of glacier fronts by kittiwakes; however, contrary to our predictions, these variations were negatively correlated to both glacier discharge and zooplankton abundance. These apparent negative relationships likely reflect non-linear effects and complex interactions between local and regional environmental factors that affect the relative profitability of glacier fronts as foraging areas. Despite their high spatial predictability, glacier fronts may not offer consistent foraging opportunities for marine predators over time.
  •  
4.
  •  
5.
  • Deschamps-Berger, Cesar, et al. (författare)
  • Closing the mass budget of a tidewater glacier : the example of Kronebreen, Svalbard
  • 2019
  • Ingår i: Journal of Glaciology. - : Cambridge University Press (CUP). - 0022-1430 .- 1727-5652. ; 65:249, s. 136-148
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, we combine remote sensing, in situ and model-derived datasets from 1966 to 2014 to calculate the mass-balance components of Kronebreen, a fast-flowing tidewater glacier in Svalbard. For the well-surveyed period 2009-2014, we are able to close the glacier mass budget within the prescribed errors. During these 5 years, the glacier geodetic mass balance was -0.69 +/- 0.12 m w.e. a(-1), while the mass budget method led to a total mass balance of -0.92 +/- 0.16 m w.e. a(-1), as a consequence of a strong frontal ablation (-0.78 +/- 0.11 m w.e. a(-1) ), and a slightly negative climatic mass balance (-0.14 +/- 0.11 m w.e. a(-1) ). The trend towards more negative climatic mass balance between 1966-1990 (+0.20 +/- 0.05 m w.e. a(-1) ) and 2009-2014 is not reflected in the geodetic mass balance trend. Therefore, we suspect a reduction in ice-discharge in the most recent period. Yet, these multidecadal changes in ice-discharge cannot be measured from the available observations and thus are only estimated with relatively large errors as a residual of the mass continuity equation. Our study presents the multidecadal evolution of the dynamics and mass balance of a tidewater glacier and illustrates the errors introduced by inferring one unmeasured mass-balance component from the others.
  •  
6.
  • Farinotti, Daniel, et al. (författare)
  • How accurate are estimates of glacier ice thickness? Results from ITMIX, the Ice Thickness Models Intercomparison eXperiment
  • 2017
  • Ingår i: The Cryosphere. - : Copernicus GmbH. - 1994-0416 .- 1994-0424. ; 11, s. 949-970
  • Tidskriftsartikel (refereegranskat)abstract
    • Knowledge of the ice thickness distribution of glaciers and ice caps is an important prerequisite for many glaciological and hydrological investigations. A wealth of approaches has recently been presented for inferring ice thickness from characteristics of the surface. With the Ice Thickness Models Intercomparison eXperiment (ITMIX) we performed the first coordinated assessment quantifying individual model performance. A set of 17 different models showed that individual ice thickness estimates can differ considerably – locally by a spread comparable to the observed thickness. Averaging the results of multiple models, however, significantly improved the results: on average over the 21 considered test cases, comparison against direct ice thickness measurements revealed deviations on the order of 10 ± 24 % of the mean ice thickness (1σ estimate). Models relying on multiple data sets – such as surface ice velocity fields, surface mass balance, or rates of ice thickness change – showed high sensitivity to input data quality. Together with the requirement of being able to handle large regions in an automated fashion, the capacity of better accounting for uncertainties in the input data will be a key for an improved next generation of ice thickness estimation approaches.
  •  
7.
  • Farinotti, Daniel, et al. (författare)
  • Results from the Ice Thickness Models Intercomparison eXperiment Phase 2 (ITMIX2)
  • 2021
  • Ingår i: Frontiers in Earth Science. - : Frontiers Media S.A.. - 2296-6463. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Knowing the ice thickness distribution of a glacier is of fundamental importance for a number of applications, ranging from the planning of glaciological fieldwork to the assessments of future sea-level change. Across spatial scales, however, this knowledge is limited by the paucity and discrete character of available thickness observations. To obtain a spatially coherent distribution of the glacier ice thickness, interpolation or numerical models have to be used. Whilst the first phase of the Ice Thickness Models Intercomparison eXperiment (ITMIX) focused on approaches that estimate such spatial information from characteristics of the glacier surface alone, ITMIX2 sought insights for the capability of the models to extract information from a limited number of thickness observations. The analyses were designed around 23 test cases comprising both real-world and synthetic glaciers, with each test case comprising a set of 16 different experiments mimicking possible scenarios of data availability. A total of 13 models participated in the experiments. The results show that the inter-model variability in the calculated local thickness is high, and that for unmeasured locations, deviations of 16% of the mean glacier thickness are typical (median estimate, three-quarters of the deviations within 37% of the mean glacier thickness). This notwithstanding, limited sets of ice thickness observations are shown to be effective in constraining the mean glacier thickness, demonstrating the value of even partial surveys. Whilst the results are only weakly affected by the spatial distribution of the observations, surveys that preferentially sample the lowest glacier elevations are found to cause a systematic underestimation of the thickness in several models. Conversely, a preferential sampling of the thickest glacier parts proves effective in reducing the deviations. The response to the availability of ice thickness observations is characteristic to each approach and varies across models. On average across models, the deviation between modeled and observed thickness increase by 8.5% of the mean ice thickness every time the distance to the closest observation increases by a factor of 10. No single best model emerges from the analyses, confirming the added value of using model ensembles.
  •  
8.
  •  
9.
  • Frank, Thomas, et al. (författare)
  • Reconciling ice dynamics and bed topography with a versatile and fast ice thickness inversion
  • 2023
  • Ingår i: The Cryosphere. - : Copernicus Publications. - 1994-0416 .- 1994-0424. ; 17:9, s. 4021-4045
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a novel thickness inversion approach that leverages satellite products and state-of-the-art ice flow models to produce distributed maps of sub-glacial topography consistent with the dynamic state of a given glacier. While the method can use any complexity of ice flow physics as represented in ice dynamical models, it is computationally cheap and does not require bed observations as input, enabling applications on both local and large scales. Using the mismatch between observed and modelled rates of surface elevation change dh/dt as the misfit functional, iterative point-wise updates to an initial guess of bed topography are made, while mismatches between observed and modelled velocities are used to simultaneously infer basal friction. The final product of the inversion is not only a map of ice thickness, but is also a fully spun-up glacier model that can be run forward without requiring any further model relaxation. Here we present the method and use an artificial ice cap built inside a numerical model to test it and conduct sensitivity experiments. Even under a range of perturbations, the method is stable and fast. We also apply the approach to the tidewater glacier Kronebreen on Svalbard and finally benchmark it on glaciers from the Ice Thickness Models Intercomparison eXperiment (ITMIX, Farinotti et al., 2017), where we find excellent performance. Ultimately, our method shown here represents a fast way of inferring ice thickness where the final output forms a consistent picture of model physics, input observations and bed topography.
  •  
10.
  • Geyman, Emily, et al. (författare)
  • Historical glacier change on Svalbard predicts doubling of mass loss by 2100
  • 2022
  • Ingår i: Nature. - : Springer Nature. - 0028-0836 .- 1476-4687. ; 601, s. 374-379
  • Tidskriftsartikel (refereegranskat)abstract
    • The melting of glaciers and ice caps accounts for about one-third of current sea-level rise1,2,3, exceeding the mass loss from the more voluminous Greenland or Antarctic Ice Sheets3,4. The Arctic archipelago of Svalbard, which hosts spatial climate gradients that are larger than the expected temporal climate shifts over the next century5,6, is a natural laboratory to constrain the climate sensitivity of glaciers and predict their response to future warming. Here we link historical and modern glacier observations to predict that twenty-first century glacier thinning rates will more than double those from 1936 to 2010. Making use of an archive of historical aerial imagery7 from 1936 and 1938, we use structure-from-motion photogrammetry to reconstruct the three-dimensional geometry of 1,594 glaciers across Svalbard. We compare these reconstructions to modern ice elevation data to derive the spatial pattern of mass balance over a more than 70-year timespan, enabling us to see through the noise of annual and decadal variability to quantify how variables such as temperature and precipitation control ice loss. We find a robust temperature dependence of melt rates, whereby a 1 °C rise in mean summer temperature corresponds to a decrease in area-normalized mass balance of −0.28 m yr−1 of water equivalent. Finally, we design a space-for-time substitution8 to combine our historical glacier observations with climate projections and make first-order predictions of twenty-first century glacier change across Svalbard.
  •  
11.
  • How, Penny, et al. (författare)
  • Rapidly changing subglacial hydrological pathways at a tidewater glacier revealed through simultaneous observations of water pressure, supraglacial lakes, meltwater plumes and surface velocities
  • 2017
  • Ingår i: The Cryosphere. - : Copernicus GmbH. - 1994-0416 .- 1994-0424. ; 11, s. 2691-2710
  • Tidskriftsartikel (refereegranskat)abstract
    • Subglacial hydrological processes at tidewater glaciers remain poorly understood due to the difficulty in obtaining direct measurements and lack of empirical verification for modelling approaches. Here, we investigate the subglacial hydrology of Kronebreen, a fast-flowing tidewater glacier in Svalbard during the 2014 melt season. We combine observations of borehole water pressure, supraglacial lake drainage, surface velocities and plume activity with modelled run-off and water routing to develop a conceptual model that thoroughly encapsulates subglacial drainage at a tidewater glacier. Simultaneous measurements suggest that an earlyseason episode of subglacial flushing took place during our observation period, and a stable efficient drainage system effectively transported subglacial water through the northern region of the glacier tongue. Drainage pathways through the central and southern regions of the glacier tongue were disrupted throughout the following melt season. Periodic plume activity at the terminus appears to be a signal for modulated subglacial pulsing, i.e. an internally driven storage and release of subglacial meltwater that operates independently of marine influences. This storage is a key control on ice flow in the 2014 melt season. Evidence from this work and previous studies strongly suggests that long-term changes in ice flow at Kronebreen are controlled by the location of efficient/inefficient drainage and the position of regions where water is stored and released.
  •  
12.
  • Ignatiuk, Dariusz, et al. (författare)
  • Ground penetrating radar measurement of snow in Svalbard - past, present, future (SnowGPR)
  • 2023
  • Ingår i: SESS report 2022 - The State of Environmental Science in Svalbard - an annual report. - : Svalbard Integrated Arctic Earth Observing System (SIOS).
  • Bokkapitel (refereegranskat)abstract
    • This is chapter 5 of the State of Environmental Science in Svalbard (SESS) report 2022.Snowpack covers 60-100% of all land in Svalbard, depending on the season, and it is very sensitive to changes in climate. Knowledge about the snowpack is important not just in itself, but also to understand how snow cover affects other components of Svalbard’s natural environment – land, sea, permafrost, glaciers, and the ecosystems that they support. Monitoring the evolution of Svalbard’s snow cover will be crucial as the world’s climate continues to warm.Ground-penetrating radars (GPRs) towed by snowmobile across glaciers and snowfields provide vital information about snowpack thickness and structure. Ideally, such surveys should be repeated annually for continuous monitoring of climate-induced change. Three decades ago, a GPR programme catalogued regional variations in snow accumulation. This should be repeated and expanded to cover all of Svalbard. The GPR method should also be further developed e.g. by mounting GPRs on drones, giving access to parts of glaciers that are too dangerous for researchers to visit. Lastly, women are encouraged to join the field of GPR-based research on snow.Most of the GPR data collected so far are not currently available in any data repository. The comprehensive compilation of available studies presented in this report, and the recommendations for metadata and data quality, are important first steps to making GPR data more accessible.
  •  
13.
  • Kierulf, H P, et al. (författare)
  • Seasonal glacier and snow loading in Svalbard recovered from geodetic observations
  • 2022
  • Ingår i: Geophysical Journal International. - : Oxford University Press (OUP). - 0956-540X .- 1365-246X. ; 229:1, s. 408-425
  • Tidskriftsartikel (refereegranskat)abstract
    • We processed time-series from seven Global Navigation Satellite System (GNSS) stations and one Very Long Baseline Interferometry (VLBI) station in Svalbard. The goal was to capture the seasonal vertical displacements caused by elastic response of variable mass load due to ice and snow accumulation. We found that estimates of the annual signal in different GNSS solutions disagree by more than 3 mm which makes geophysical interpretation of raw GNSS time-series problematic. To overcome this problem, we have used an enhanced Common Mode (CM) filtering technique. The time-series are differentiated by the time-series from remote station BJOS with known mass loading signals removed a priori. Using this technique, we have achieved a substantial reduction of the differences between the GNSS solutions. We have computed mass loading time-series from a regional Climatic Mass Balance (CMB) and snow model that provides the amount of water equivalent at a 1 km resolution with a time step of 7 d. We found that the entire vertical loading signal is present in data of two totally independent techniques at a statistically significant level of 95 per cent. This allowed us to conclude that the remaining errors in vertical signal derived from the CMB model are less than 0.2 mm at that significance level. Refining the land water storage loading model with a CMB model resulted in a reduction of the annual amplitude from 2.1 to 1.1 mm in the CM filtered time-series, while it had only a marginal impact on raw time-series. This provides a strong evidence that CM filtering is essential for revealing local periodic signals when a millimetre level of accuracy is required.
  •  
14.
  • Killie, Mari Anne, et al. (författare)
  • Svalbard snow and sea-ice cover : comparing satellite data, on-site measurements, and modelling results (SvalSCESIA)
  • 2021
  • Ingår i: SESS report 2020. - Longyearbyen : Svalbard Integrated Arctic Earth Observing System. - 9788269152883 - 9788269152890 ; , s. 220-235
  • Bokkapitel (refereegranskat)abstract
    • Fundamental knowledge gaps and scaling issues hamper efforts to determine how changes in snow cover and snow distribution affect ecosystems. The presence of snow cover has huge impact on Arctic ecosystems, human activities, atmospheric processes and Earth’s surface energy balance. Mapping snow cover over large regions is challenging because of its variability over time and space. Also, the small number of weather stations that measure snow cover contributes to a poor observational base. Svalbard is located on the border between the ice-covered Arctic Ocean and the warmer North Atlantic, which means the sea is a controlling factor for Svalbard’s climate. By using remote sensing monitoring it is possible to get a better overview of snow conditions on land. This information can be compared with on-site observations of snow, output from snow models, and evaluated in relation to the sea-ice extent in the adjacent sea. A 34-year satellite data record for snow cover indicates that snow now starts melting more than a week earlier. The total number of snow-free days in summer is increasing fastest in regions dominated by lowland valleys and coastal plains. Most noticeable are the trends centred near the large valleys of Nordenskiöld Land. Negative trends dominate the extent of the sea ice as well. There is significant and positive correlation between sea-ice area and snow-cover extent at elevations up to 250 m in June, the month when snow melt begins. Snow melt, again, is probably strongly affected by ocean–air interactions and energy exchange when warm (or cold) winds from an open (or ice-covered) ocean come in over land.
  •  
15.
  • Kronenberg, Marlene, et al. (författare)
  • Long-term firn and mass balance modelling for Abramov Glacier in the data-scarce Pamir Alay
  • 2022
  • Ingår i: The Cryosphere. - : Copernicus Publications. - 1994-0416 .- 1994-0424. ; 16:12, s. 5001-5022
  • Tidskriftsartikel (refereegranskat)abstract
    • Several studies identified heterogeneous glacier mass changes in western High Mountain Asia over the last decades. Causes for these mass change patterns are still not fully understood. Modelling the physical interactions between glacier surface and atmosphere over several decades can provide insight into relevant processes. Such model applications, however, have data needs which are usually not met in these data-scarce regions. Exceptionally detailed glaciological and meteorological data exist for the Abramov Glacier in the Pamir Alay range. In this study, we use weather station measurements in combination with downscaled reanalysis data to force a coupled surface energy balance–multilayer subsurface model for Abramov Glacier for 52 years. Available in situ data are used for model calibration and validation. We find an overall negative mass balance of −0.27 mw.e.a-1  for 1968/1969–2019/2020 and a loss of firn pore space causing a reduction of internal accumulation. Despite increasing air temperatures, we do not find an acceleration of glacier-wide mass loss over time. Such an acceleration is compensated for by increasing precipitation rates (+0.0022  mw.e.a-1, significant at a 90 % confidence level). Our results indicate a significant correlation between annual mass balance and precipitation (R2 = 0.72).
  •  
16.
  • Köhler, Andreas, et al. (författare)
  • Characterization of seasonal glacial seismicity from a single-station on-ice record at Holtedahlfonna, Svalbard
  • 2019
  • Ingår i: Annals of Glaciology. - : Cambridge University Press (CUP). - 0260-3055 .- 1727-5644. ; 60:79, s. 23-36
  • Tidskriftsartikel (refereegranskat)abstract
    • Glacial seismicity provides important insights into glacier dynamic processes. We study the temporal distribution of cryogenic seismic signals (icequakes) at Holtedahlfonna, Svalbard, between April and August 2016 using a single three-component sensor. We investigate sources of observed icequakes using polarization analysis and waveform modeling. Processes responsible for five icequake categories are suggested, incorporating observations of previous studies into our interpretation. We infer that the most dominant icequake type is generated by surface crevasse opening through hydrofracturing. Secondly, bursts of high-frequency signals are presumably caused by repeated near-surface crevassing due to high strain rates during glacier fast-flow episodes. Furthermore, signals related to resonance in water-filled cracks, fracturing or settling events in dry firn or snow before the melt season, and processes at the glacier bed are observed. Amplitude of seismic background noise is clearly related to glacier runoff. We process ambient seismic noise to invert horizontal-to-vertical spectral ratios for a sub-surface seismic velocity model used to model icequake signals. Our study shows that a single seismic sensor provides useful information about seasonal ice dynamics in case deployment of a network is not feasible.
  •  
17.
  • Maier, Kathrin, et al. (författare)
  • Direct photogrammetry with multispectral imagery for UAV-based snow depth estimation
  • 2022
  • Ingår i: ISPRS journal of photogrammetry and remote sensing (Print). - : Elsevier BV. - 0924-2716 .- 1872-8235. ; 186, s. 1-18
  • Tidskriftsartikel (refereegranskat)abstract
    • More accurate snow quality predictions are needed to economically and socially support communities in a changing Arctic environment. This contrasts with the current availability of affordable and efficient snow monitoring methods. In this study, a novel approach is presented to determine spatial snow depth distribution in challenging alpine terrain that was tested during a field campaign performed in the Tarfala valley, Kebnekaise mountains, northern Sweden, in April 2019. The combination of a multispectral camera and an Unmanned Aerial Vehicle (UAV) was used to derive three-dimensional (3D) snow surface models via Structure from Motion (SfM) with direct georeferencing. The main advantage over conventional photogrammetric surveys is the utilization of accurate Real-Time Kinematic (RTK) positioning which enables direct georeferencing of the images, and therefore eliminates the need for ground control points. The proposed method is capable of producing high -resolution 3D snow-covered surface models (<7 cm/pixel) of alpine areas up to eight hectares in a fast, reli-able and affordable way. The test sites' average snow depth was 160 cm with an average standard deviation of 78 cm. The overall Root-Mean-Square Errors (RMSE) of the snow depth range from 11.52 cm for data acquired in ideal surveying conditions to 41.03 cm in aggravated light and wind conditions. Results of this study suggest that the red components in the electromagnetic spectrum, i.e., the red, red edge, and near-infrared (NIR) band, contain the majority of information used in photogrammetric processing. The experiments highlighted a sig-nificant influence of the multi-spectral imagery on the quality of the final snow depth estimation as well as a strong potential to reduce processing times and computational resources by limiting the dimensionality of the imagery through the application of a Principal Component Analysis (PCA) before the photogrammetric 3D reconstruction. The proposed method is part of closing the scale gap between discrete point measurements and regional-scale remote sensing and complements large-scale remote sensing data and snow model output with an adequate validation source.
  •  
18.
  •  
19.
  • Marchenko, Sergey, et al. (författare)
  • A plot-scale study of firn stratigraphy at Lomonosovfonna, Svalbard, using ice cores, borehole video and GPR surveys in 2012–14
  • 2017
  • Ingår i: Journal of Glaciology. - : Cambridge University Press (CUP). - 0022-1430 .- 1727-5652. ; 63:237, s. 67-78
  • Tidskriftsartikel (refereegranskat)abstract
    • Spatial heterogeneity of snow and firn properties on glaciers introduces uncertainty in interpretation of point and profile observations and complicates modelling of meltwater percolation and runoff. Here we present a study of the temporal and spatial dynamics of firn density and stratigraphy at the plot-scale (approximate to 10 m x 10 m x 10 m) repeated annually during 2012-14 at the Lomonosovfonna ice-field, Svalbard. Results from cores, video inspections in boreholes and radar grid surveys are compared. Ice layers 0.1-50 cm thick comprised approximate to 8% of the borehole length. Most of them are 1-3 cm thick and could not be traced between boreholes separated by 3 m. Large lateral variability of firn structure affects representativeness of observations in single holes and calls for repeated studies in multiple points to derive a representative stratigraphy signal. Radar reflections are poorly correlated with ice layers in individual boreholes. However, the match between the high amplitude peaks in the grid-averaged radar signal and horizons of preferential ice layer formation revealed by averaging the video surveys over multiple boreholes is higher. These horizons are interpreted as buried firn layers previously exposed to melt-freeze or wind-driven densification and several of them are consistently recovered throughout three field campaigns.
  •  
20.
  • Marchenko, Sergey A., et al. (författare)
  • Water content of firn at Lomonosovfonna, Svalbard, derived from subsurface temperature measurements
  • 2021
  • Ingår i: Journal of Glaciology. - : Cambridge University Press. - 0022-1430 .- 1727-5652. ; 67:265, s. 921-932
  • Tidskriftsartikel (refereegranskat)abstract
    • The potential of capillary forces to retain water in pores is an important property of snow and firn at glaciers. Meltwater suspended in pores does not contribute to runoff and may refreeze during winter, which can affect the climatic mass balance and the subsurface density and temperature. However, measurement of firn water content is challenging and few values have been reported in the literature. Here, we use subsurface temperature and density measured at the accumulation zone of Lomonosovfonna (1200 m a.s.l.), Svalbard, to derive water content of the firn profiles after the 2014 and 2015 melt seasons. We do this by comparing measured and simulated rates of freezing front propagation. The calculated volumetric water content of firn is ~1.0–2.5 vol.% above the depth of 5 m and <0.5 vol.% below. Results derived using different thermistor strings suggest a prominent lateral variability in firn water content. Reported values are considerably lower than those commonly used in snow/firn models. This is interpreted as a result of preferential water flow in firn leaving dry volumes within wetted firn. This suggests that the implementation of irreducible water content values below 0.5 vol.% within snow/firn models should be considered at the initial phase of water infiltration.
  •  
21.
  •  
22.
  • Marchenko, Sergey, et al. (författare)
  • Parameterizing deep water percolation improves subsurface temperature simulations by a multilayer firn model
  • 2017
  • Ingår i: Frontiers in Earth Science. - : Frontiers Media SA. - 2296-6463. ; 5:16
  • Tidskriftsartikel (refereegranskat)abstract
    • Deep preferential percolation of melt water in snow and firn brings water lower along the vertical profile than a laterally homogeneous wetting front. This widely recognized process is an important source of uncertainty in simulations of subsurface temperature, density, and water content in seasonal snow and in firn packs on glaciers and ice sheets. However, observation and quantification of preferential flow is challenging and therefore it is not accounted for by most of the contemporary snow/firn models. Here we use temperature measurements in the accumulation zone of Lomonosovfonna, Svalbard, done in April 2012-2015 using multiple thermistor strings to describe the process of water percolation in snow and firn. Effects of water flow through the snow and firn profile are further explored using a coupled surface energy balance - firn model forced by the output of the regional climate model WRF. In situ air temperature, radiation, and surface height change measurements are used to constrain the surface energy and mass fluxes. To account for the effects of preferential water flow in snow and firn we test a set of depth-dependent functions allocating a certain fraction of the melt water available at the surface to each snow/firn layer. Experiments are performed for a range of characteristic percolation depths and results indicate a reduction in root mean square difference between the modeled and measured temperature by up to a factor of two compared to the results from the default water infiltration scheme. This illustrates the significance of accounting for preferential water percolation to simulate subsurface conditions. The suggested approach to parameterization of the preferential water flow requires low additional computational cost and can be implemented in layered snow/ firn models applied both at local and regional scales, for distributed domains with multiple mesh points.
  •  
23.
  • Mattea, Enrico, et al. (författare)
  • Firn changes at Colle Gnifetti revealed with a high-resolution process-based physical model approach
  • 2021
  • Ingår i: The Cryosphere. - : Copernicus GmbH. - 1994-0416 .- 1994-0424. ; 15, s. 3181-3205
  • Tidskriftsartikel (refereegranskat)abstract
    • Our changing climate is expected to affect ice core records as cold firn progressively transitions to a temperate state. Thus, there is a need to improve our understanding and to further develop quantitative process modeling, to better predict cold firn evolution under a range of climate scenarios. Here we present the application of a distributed, fully coupled energy balance model, to simulate cold firn at the high-alpine glaciated saddle of Colle Gnifetti (Swiss–Italian Alps) over the period 2003–2018. We force the model with high-resolution, long-term, and extensively quality-checked meteorological data measured in the closest vicinity of the firn site, at the highest automatic weather station in Europe (Capanna Margherita, 4560 m a.s.l.). The model incorporates the spatial variability of snow accumulation rates and is calibrated using several partly unpublished high-altitude measurements from the Monte Rosa area. The simulation reveals a very good overall agreement in the comparison with a large archive of firn temperature profiles. Our results show that surface melt over the glaciated saddle is increasing by 3–4 mm w.e. yr−2 depending on the location (29 %–36 % in 16 years), although with large inter-annual variability. Analysis of modeled melt indicates the frequent occurrence of small melt events (<4 mm w.e.), which collectively represent a significant fraction of the melt totals. Modeled firn warming rates at 20 m depth are relatively uniform above 4450 m a.s.l. (0.4–0.5 ∘C per decade). They become highly variable at lower elevations, with a marked dependence on surface aspect and absolute values up to 2.5 times the local rate of atmospheric warming. Our distributed simulation contributes to the understanding of the thermal regime and evolution of a prominent site for alpine ice cores and may support the planning of future core drilling efforts. Moreover, thanks to an extensive archive of measurements available for comparison, we also highlight the possibilities of model improvement most relevant to the investigation of future scenarios, such as the fixed-depth parametrized routine of deep preferential percolation.
  •  
24.
  • Oerlemans, Johannes, et al. (författare)
  • A model study of Abrahamsenbreen, a surging glacier in northern Spitsbergen
  • 2015
  • Ingår i: The Cryosphere. - : Copernicus GmbH. - 1994-0416 .- 1994-0424. ; 9:2, s. 767-779
  • Tidskriftsartikel (refereegranskat)abstract
    • The climate sensitivity of Abrahamsenbreen, a 20 km long surge-type glacier in northern Spitsbergen, is studied with a simple glacier model. A scheme to describe the surges is included, which makes it possible to account for the effect of surges on the total mass budget of the glacier. A climate reconstruction back to AD 1300, based on ice-core data from Lomonosovfonna and climate records from Longyearbyen, is used to drive the model. The model is calibrated by requesting that it produce the correct Little Ice Age maximum glacier length and simulate the observed magnitude of the 1978 surge. Abrahamsenbreen is strongly out of balance with the current climate. If climatic conditions remain as they were for the period 1989–2010, the glacier will ultimately shrink to a length of about 4 km (but this will take hundreds of years). For a climate change scenario involving a 2 m year−1 rise of the equilibrium line from now onwards, we predict that in the year 2100 Abrahamsenbreen will be about 12 km long. The main effect of a surge is to lower the mean surface elevation and thereby to increase the ablation area, causing a negative perturbation of the mass budget. We found that the occurrence of surges leads to a faster retreat of the glacier in a warming climate. Because of the very small bed slope, Abrahamsenbreen is sensitive to small perturbations in the equilibrium-line altitude. If the equilibrium line were lowered by only 160 m, the glacier would steadily grow into Woodfjorddalen until, after 2000 years, it would reach Woodfjord and calving would slow down the advance. The bed topography of Abrahamsenbreen is not known and was therefore inferred from the slope and length of the glacier. The value of the plasticity parameter needed to do this was varied by +20 and −20%. After recalibration the same climate change experiments were performed, showing that a thinner glacier (higher bedrock in this case) in a warming climate retreats somewhat faster.
  •  
25.
  • Pramanik, Ankit, et al. (författare)
  • Comparison of snow accumulation events on two High Arctic glaciers to model-derived and observed precipitation
  • 2019
  • Ingår i: Polar Research. - : Norwegian Polar Institute. - 0800-0395 .- 1751-8369. ; 38
  • Tidskriftsartikel (refereegranskat)abstract
    • We evaluate how precipitation forcing data used in glacier mass balance models characterize snow accumulation events on synoptic timescales for two glaciers in north-western Svalbard (Kongsvegen and Holtedahlfonna). Using sonic ranger (snow depth) and wind speed data from automatic weather stations located on the glaciers, we distinguish accumulation events occurring under either calm or windy conditions. We show clear differences in the timing and magnitude of snow accumulation events between the two neighbouring glaciers, illustrating the spatial heterogeneity of snow accumulation in this region. The accumulation measurements show that at equivalent elevations, Kongsvegen receives more snowfall than neighbouring Holtedahlfonna, and that Kongsvegen is more affected by wind-driven snow redistribution than Holtedahlfonna. This is consistent with the synoptically-driven precipitation patterns in the region. Accumulation events are then compared to precipitation data from the nearest meteorological station in Ny-Ålesund (ca. 30 km distant) and to a downscaled snowfall data product based on the ERA-Interim reanalysis (nearest gridpoint ca. 300 m distant). Evaluation of the synchrony of observed events at the glacier sites and the precipitation products shows that the ERA-Interim precipitation data reproduce more snowfall events than the Ny-Ålesund station data, suggesting that the precipitation fields from distributed reanalysis data provide a more reasonable representation of accumulation on the study glaciers, even over short timescales.
  •  
26.
  • Pramanik, Ankit, et al. (författare)
  • Simulating climatic mass balance, seasonal snow development and associated freshwater runoff in the Kongsfjord basin, Svalbard (1980–2016)
  • 2018
  • Ingår i: Journal of Glaciology. - : Cambridge University Press (CUP). - 0022-1430 .- 1727-5652. ; 64:248, s. 943-956
  • Tidskriftsartikel (refereegranskat)abstract
    • The Kongsfjord basin in northwest Svalbard is the site of a number of interdisciplinary studies concerned with the effect of fresh water from seasonal snow and glacier melt on the physical and biological environment. We use an energy-balance model coupled with a subsurface snow model to simulate the long-term climatic mass-balance evolution of the glaciers and the seasonal snow development of nonglacierized parts of the Kongsfjord basin. Runoff from both glacierized and nonglacierized parts of the basin is simulated to quantify the fresh water flux to the fjord. The model is calibrated with long-term mass-balance data measured at four glaciers, and with automatic weather station data. The simulated area-averaged climatic mass balance for the whole basin is positive (+0.23 m w.e. a−1) over the period 1980–2016; however, the trend for net mass balance is not statistically significant over the simulation period, despite the observed ongoing summer warming. Refreezing equals 0.24 m w.e. a−1, which is equivalent to 17% of the total mass gain from precipitation and moisture deposition. Total runoff comprises contributions from seasonal snow in the nonglacierized area (16%) and glacier discharge (84%). Model time series shows a significant increasing trend for annual glacier runoff (6.83 × 106 m3 a−1) over the simulation period.
  •  
27.
  •  
28.
  • Terleth, Yoram, et al. (författare)
  • Complementary approaches towards a universal model of glacier surges
  • 2021
  • Ingår i: Frontiers in Earth Science. - : Frontiers Media S.A.. - 2296-6463. ; 9
  • Forskningsöversikt (refereegranskat)abstract
    • Although many convincing, diverse, and sometimes competing models of glacier surging have been proposed, the observed behavior of surging glaciers does not fit into distinct categories, and suggests the presence of a universal mechanism driving all surges. On the one hand, recent simulations of oscillatory flow behavior through the description of transient basal drag hint at a fundamental underlying process. On the other hand, the proposition of a unified model of oscillatory flow through the concept of enthalpy adopts a systems based view, in an attempt to rather unify different mechanisms through a single universal measure. While these two general approaches differ in perspective, they are not mutually exclusive, and seem likely to complement each other. A framework incorporating both approaches would see the mechanics of basal drag describing ice flow velocity and surge propagation as a function of forcing by conditions at the glacier bed, in turn modulated through the unified measure of enthalpy.
  •  
29.
  • Terleth, Yoram, et al. (författare)
  • Spatial variability in winter mass balance on Storglaciären modelled with a terrain-based approach
  • 2023
  • Ingår i: Journal of Glaciology. - : Cambridge University Press. - 0022-1430 .- 1727-5652. ; 69:276, s. 749-761
  • Tidskriftsartikel (refereegranskat)abstract
    • Although most processes governing the surface mass balance on mountain glaciers are well understood, the causes and extent of spatial variability in accumulation remain poorly constrained. In the present study, we couple an energy balance–snow and firn mass-balance model to terrain-based modelling routines estimating mass redistribution by snowdrift, preferential deposition and avalanching. We find this newly coupled model improves the spatial accuracy of winter balance simulations on Storglaciären, Sweden, while retaining versatility and a low computational cost. Accumulation on Storglaciären is primarily driven by direct precipitation, which is locally increased due to small-scale orographic effects. Wind-driven snow transport leads to substantial deposition in the accumulation zone and slight erosion in the ablation zone. Avalanching is the smallest contributor to winter balance, but cannot be neglected. The role of mass transporting processes in maintaining the current mass equilibrium on Storglaciären highlights the necessity to understand the links between climatic predictors and accumulation in order to accurately assess climate sensitivity.
  •  
30.
  • Vallot, Dorothée, 1984-, et al. (författare)
  • Basal dynamics of Kronebreen, a fast-flowing tidewater glacier in Svalbard : non-local spatio-temporal response to water input
  • 2017
  • Ingår i: Journal of Glaciology. - : Cambridge University Press (CUP). - 0022-1430 .- 1727-5652. ; 63:242, s. 1012-1024
  • Tidskriftsartikel (refereegranskat)abstract
    • We evaluate the variability in basal friction for Kronebreen, Svalbard, a fast-flowing tidewater glacier. We invert 3 years (2013–15) of surface velocities at high temporal resolution (generally 11 days), to estimate the changing basal properties of the glacier. Our results suggest that sliding behaviour of Kronebreen within a year is primarily influenced by changes in water input patterns during the meltwater season and basal friction is highly variable from a year to another. At present, models usually employ parameterisations to encompass the complex physics of glacier sliding by mathematically simulate their net effect. For such ice masses with strong seasonal variations of surface melt, the spatio-temporal patterns of basal friction imply that it is neither possible nor appropriate to use a parameterisation for bed friction that is fixed in space and/or time, at least in a timescale of a few years. Basal sliding may not only be governed by local processes such as basal topography or summer melt, but also be mediated by factors that vary over a larger distance and over a longer time period such as subglacial hydrology organisation, ice-thickness changes or calving front geometry.
  •  
31.
  • Vallot, Dorothée, et al. (författare)
  • Effects of undercutting and sliding on calving : a global approach applied to Kronebreen, Svalbard
  • 2018
  • Ingår i: The Cryosphere. - : Copernicus GmbH. - 1994-0416 .- 1994-0424. ; 12, s. 609-625
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper, we study the effects of basal friction, sub-aqueous undercutting and glacier geometry on the calving process by combining six different models in an offline-coupled workflow: a continuum-mechanical ice flow model (Elmer/Ice), a climatic mass balance model, a simple sub-glacial hydrology model, a plume model, an undercutting model and a discrete particle model to investigate fracture dynamics (Helsinki Discrete Element Model, HiDEM). We demonstrate the feasibility of reproducing the observed calving retreat at the front of Kronebreen, a tidewater glacier in Svalbard, during a melt season by using the output from the first five models as input to HiDEM. Basal sliding and glacier motion are addressed using Elmer/Ice, while calving is modelled by HiDEM. A hydrology model calculates subglacial drainage paths and indicates two main outlets with different discharges. Depending on the discharge, the plume model computes frontal melt rates, which are iteratively projected to the actual front of the glacier at subglacial discharge locations. This produces undercutting of different sizes, as melt is concentrated close to the surface for high discharge and is more diffuse for low discharge. By testing different configurations, we show that undercutting plays a key role in glacier retreat and is necessary to reproduce observed retreat in the vicinity of the discharge locations during the melting season. Calving rates are also influenced by basal friction, through its effects on near-terminus strain rates and ice velocity.
  •  
32.
  •  
33.
  • Van Pelt, Ward, et al. (författare)
  • A long-term dataset of climatic mass balance, snow conditions, and runoff in Svalbard (1957–2018)
  • 2019
  • Ingår i: The Cryosphere. - : Copernicus GmbH. - 1994-0416 .- 1994-0424. ; 13, s. 2259-2280
  • Tidskriftsartikel (refereegranskat)abstract
    • The climate in Svalbard is undergoing amplified change compared to the global mean. This has major implications for runoff from glaciers and seasonal snow on land. We use a coupled energy balance–subsurface model, forced with downscaled regional climate model fields, and apply it to both glacier-covered and land areas in Svalbard. This generates a long-term (1957–2018) distributed dataset of climatic mass balance (CMB) for the glaciers, snow conditions, and runoff with a 1 km×1 km spatial and 3-hourly temporal resolution. Observational data including stake measurements, automatic weather station data, and subsurface data across Svalbard are used for model calibration and validation. We find a weakly positive mean net CMB (+0.09 m w.e. a−1) over the simulation period, which only fractionally compensates for mass loss through calving. Pronounced warming and a small precipitation increase lead to a spatial-mean negative net CMB trend (−0.06 m w.e. a−1 decade−1), and an increase in the equilibrium line altitude (ELA) by 17 m decade−1, with the largest changes in southern and central Svalbard. The retreating ELA in turn causes firn air volume to decrease by 4 % decade−1, which in combination with winter warming induces a substantial reduction of refreezing in both glacier-covered and land areas (average −4 % decade−1). A combination of increased melt and reduced refreezing causes glacier runoff (average 34.3 Gt a−1) to double over the simulation period, while discharge from land (average 10.6 Gt a−1) remains nearly unchanged. As a result, the relative contribution of land runoff to total runoff drops from 30 % to 20 % during 1957–2018. Seasonal snow on land and in glacier ablation zones is found to arrive later in autumn (+1.4 d decade−1), while no significant changes occurred on the date of snow disappearance in spring–summer. Altogether, the output of the simulation provides an extensive dataset that may be of use in a wide range of applications ranging from runoff modelling to ecosystem studies.
  •  
34.
  • van Pelt, Ward, et al. (författare)
  • An iterative inverse method to estimate basal topography and initialize ice flow models
  • 2013
  • Ingår i: The Cryosphere. - : Copernicus GmbH. - 1994-0416 .- 1994-0424. ; 7:3, s. 987-1006
  • Tidskriftsartikel (refereegranskat)abstract
    • We evaluate an inverse approach to reconstruct distributed bedrock topography and simultaneously initialize an ice flow model. The inverse method involves an iterative procedure in which an ice dynamical model (PISM) is run multiple times over a prescribed period, while being forced with space-and time-dependent climate input. After every iteration bed heights are adjusted using information of the remaining misfit between observed and modeled surface topography. The inverse method is first applied in synthetic experiments with a constant climate forcing to verify convergence and robustness of the approach in three dimensions. In a next step, the inverse approach is applied to Nordenskioldbreen, Svalbard, forced with height-and time-dependent climate input since 1300 AD. An L-curve stopping criterion is used to prevent overfitting. Validation against radar data reveals a high correlation (up to R = 0.89) between modeled and observed thicknesses. Remaining uncertainties can mainly be ascribed to inaccurate model physics, in particular, uncertainty in the description of sliding. Results demonstrate the applicability of this inverse method to reconstruct the ice thickness distribution of glaciers and ice caps. In addition to reconstructing bedrock topography, the method provides a direct tool to initialize ice flow models for forecasting experiments.
  •  
35.
  • van Pelt, Ward, et al. (författare)
  • Inverse estimation of snow accumulation along a radar transect on Nordenskioldbreen, Svalbard
  • 2014
  • Ingår i: Journal of Geophysical Research - Earth Surface. - 2169-9003 .- 2169-9011. ; 119:4, s. 816-835
  • Tidskriftsartikel (refereegranskat)abstract
    • We present an inverse modeling approach to reconstruct annual accumulation patterns from ground-penetrating radar (GPR) data. A coupled surface energy balance-snow model simulates surface melt and the evolution of subsurface density, temperature, and water content. The inverse problem consists of iteratively calibrating accumulation, serving as input for the model, by finding a match between modeled and observed radar travel times. The inverse method is applied to a 16km GPR transect on Nordenskioldbreen, Svalbard, yielding annual accumulation patterns for 2007-2012. Accumulation patterns with a mean of 0.75meter water equivalent (mwe)a(-1)contain substantial spatial variability, with a mean annual standard deviation of 0.17mwea(-1), and show only partial consistency from year to year. In contrast to traditional methods, accounting for melt water percolation, refreezing, and runoff facilitates accurate accumulation reconstruction in areas with substantial melt. Additionally, accounting for horizontal density variability along the transect is shown to reduce spatial variability in reconstructed accumulation, whereas incorporating irreducible water storage lowers accumulation estimates. Correlating accumulation to terrain characteristics in the dominant wind direction indicates a strong preference of snow deposition on leeward slopes, whereas weaker correlations are found with terrain curvature. Sensitivity experiments reveal a nonlinear response of the mass balance to accumulation changes. The related negative impact of small-scale accumulation variability on the mean net mass balance is quantified, yielding a negligible impact in the accumulation zone and a negative impact of -0.09mwea(-1)in the ablation area.
  •  
36.
  • Van Pelt, Ward J. J., et al. (författare)
  • Accelerating future mass loss of Svalbard glaciers from a multi-model ensemble
  • 2021
  • Ingår i: Journal of Glaciology. - : Cambridge University Press. - 0022-1430 .- 1727-5652. ; 67:263, s. 485-499
  • Tidskriftsartikel (refereegranskat)abstract
    • Projected climate warming and wettening will have a major impact on the state of glaciers and seasonal snow in High Arctic regions. Following up on a historical simulation (1957–2018) for Svalbard, we make future projections of glacier climatic mass balance (CMB), snow conditions on glaciers and land, and runoff, under Representative Concentration Pathways (RCP) 4.5 and 8.5 emission scenarios for 2019–60. We find that the average CMB for Svalbard glaciers, which was weakly positive during 1957–2018, becomes negative at an accelerating rate during 2019–60 for both RCP scenarios. Modelled mass loss is most pronounced in southern Svalbard, where the equilibrium line altitude is predicted to rise well above the hypsometry peak, leading to the first occurrences of zero accumulation-area ratio already by the 2030s. In parallel with firn line retreat, the total pore volume in snow and firn drops by as much as 70–80% in 2060, compared to 2018. Total refreezing remains largely unchanged, despite a marked change in the seasonal pattern towards increased refreezing in winter. Finally, we find pronounced shortening of the snow season, while combined runoff from glaciers and land more than doubles from 1957–2018 to 2019–60, for both scenarios.
  •  
37.
  • Van Pelt, Ward J.J., et al. (författare)
  • Dynamic response of a High Arctic glacier to melt and runoff variations
  • 2018
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 45:10, s. 4917-4926
  • Tidskriftsartikel (refereegranskat)abstract
    • The dynamic response of High Arctic glaciers to increased runoff in a warming climateremains poorly understood. We analyze a 10-year record of continuous velocity data collected atmultiple sites on Nordenskiöldbreen, Svalbard, and study the connec tion between ice flow andrunoff within and between seasons. During the melt season, the sensitivit y of ice motion to runoffat sites in the ablation and lower accumulation zone drops by a fac tor of 3 when cumulative runoff exceedsa local threshold, which is likely associated with a transition from inefficient (distributed) to efficient(channelized) drainage. Average summer (June–August) velocities are found to increase with summerablation, while subsequent fall (September–November) velocities decrease. Spring (March–May)velocities are largely insensitive to summer ablation, which suggests a short-lived impact of summermelt on ice flow during the cold season. The net impact of summer ablation on annual velocities is foundto be insignificant.
  •  
38.
  • van Pelt, Ward J. J., et al. (författare)
  • Multi-decadal climate and seasonal snow conditions in Svalbard
  • 2016
  • Ingår i: Journal of Geophysical Research - Earth Surface. - 2169-9003 .- 2169-9011. ; 121:11, s. 2100-2117
  • Tidskriftsartikel (refereegranskat)abstract
    • Svalbard climate is undergoing amplified change with respect to the global mean. Changing climate conditions directly affect the evolution of the seasonal snowpack, through its impact on accumulation, melt, and moisture exchange. We analyze long-term trends and spatial patterns of seasonal snow conditions in Svalbard between 1961 and 2012. Downscaled regional climate model output is used to drive a snow modeling system (SnowModel), with coupled modules simulating the surface energy balance and snowpack evolution. The precipitation forcing is calibrated and validated against snow depth data on a set of glaciers around Svalbard. Climate trends reveal seasonally inhomogeneous warming and a weakly positive precipitation trend, with strongest changes in the north. In response to autumn warming the date of snow onset increased (2days decade(-1)), whereas in spring/summer opposing effects cause a nonsignificant trend in the snow disappearance date. Maximum snow water equivalent (SWE) in winter/spring shows a modest increase (+0.01 meters water equivalent (mwe)decade(-1)), while the end-of-summer minimum snow area fraction declined strongly (from 48% to 36%). The equilibrium line altitude is highest in relatively dry inland regions, and time series show a clear positive trend (25mdecade(-1)) as a result of summer warming. Finally, rain-on-snow in the core winter season, affecting ground ice formation and limiting access of grazing animals to food supplies, peaks during specific years (1994, 1996, 2000, and 2012) and is found to be concentrated in the lower lying coastal regions in southwestern Svalbard.
  •  
39.
  •  
40.
  •  
41.
  • van Pelt, Ward, et al. (författare)
  • Modelling the long-term mass balance and firn evolution of glaciers around Kongsfjorden, Svalbard
  • 2015
  • Ingår i: Journal of Glaciology. - 0022-1430 .- 1727-5652. ; 61:228, s. 731-744
  • Tidskriftsartikel (refereegranskat)abstract
    • We analyse the long-term (1961-2012) distributed surface mass balance and firn evolution of the Kongsvegen and Holtedahlfonna glacier systems in northwestern Svalbard. We couple a surface energy-balance model to a firn model, with forcing provided from regional climate model output. In situ observational data are used to calibrate model parameters and validate the output. The simulated area-averaged surface mass balance for 1961-2012 is slightly positive (0.08 m w.e. a(-1)), which only fractionally compensates for mass loss by calving. Refreezing of percolating water in spring/summer (0.13 m w.e. a(-1)) and stored water in fall/winter (0.18 m w.e. a(-1)) provides a buffer for runoff. Internal accumulation, i.e. refreezing below the previous year's summer surface in the accumulation zone, peaks up to 0.22 m w.e. a(-1), and is unaccounted for by stake observations. Superimposed ice formation in the lower accumulation zone ranges as high as 0.25 m w.e. a(-1). A comparison of the periods 1961-99 and 2000-12 reveals 21% higher annual melt rates since 2000 and a 31% increase in runoff, which can only in part be ascribed to recent warmer and drier conditions. In response to firn line retreat, both albedo lowering (snow/ice-albedo feedback) and lower refreezing rates (refreezing feedback) further amplified runoff.
  •  
42.
  •  
43.
  • Vandecrux, Baptiste, et al. (författare)
  • The firn meltwater Retention Model Intercomparison Project (RetMIP) : evaluation of nine firn models at four weather station sites on the Greenland ice sheet
  • 2020
  • Ingår i: The Cryosphere. - : Copernicus GmbH. - 1994-0416 .- 1994-0424. ; 14:11, s. 3785-3810
  • Tidskriftsartikel (refereegranskat)abstract
    • Perennial snow, or firn, covers 80 % of the Greenland ice sheet and has the capacity to retain surface meltwater, influencing the ice sheet mass balance and contribution to sea-level rise. Multilayer firn models are traditionally used to simulate firn processes and estimate meltwater retention. We present, intercompare and evaluate outputs from nine firn models at four sites that represent the ice sheet's dry snow, percolation, ice slab and firn aquifer areas. The models are forced by mass and energy fluxes derived from automatic weather stations and compared to firn density, temperature and meltwater percolation depth observations. Models agree relatively well at the dry-snow site while elsewhere their meltwater infiltration schemes lead to marked differences in simulated firn characteristics. Models accounting for deep meltwater percolation overestimate percolation depth and firn temperature at the percolation and ice slab sites but accurately simulate recharge of the firn aquifer. Models using Darcy's law and bucket schemes compare favorably to observed firn temperature and meltwater percolation depth at the percolation site, but only the Darcy models accurately simulate firn temperature and percolation at the ice slab site. Despite good performance at certain locations, no single model currently simulates meltwater infiltration adequately at all sites. The model spread in estimated meltwater retention and runoff increases with increasing meltwater input. The highest runoff was calculated at the KAN_U site in 2012, when average total runoff across models (+/- 2 sigma) was 353 +/- 610 mm w. e. (water equivalent), about 27 +/- 48 % of the surface meltwater input. We identify potential causes for the model spread and the mismatch with observations and provide recommendations for future model development and firn investigation.
  •  
44.
  • Vega, Carmen P., et al. (författare)
  • A synthetic ice core approach to estimate ion relocation in anice field site experiencing periodical melt : a case study onLomonosovfonna, Svalbard
  • 2016
  • Ingår i: The Cryosphere. - : Copernicus GmbH. - 1994-0416 .- 1994-0424. ; 10, s. 961-976
  • Tidskriftsartikel (refereegranskat)abstract
    • Physical and chemical properties of four different ice cores (LF-97, LF-08, LF-09 and LF-11) drilled at Lomonosovfonna, Svalbard, were compared to investigate the effects of meltwater percolation on the chemical and physical stratigraphy of these records. A synthetic ice core approach was employed as reference record to estimate the ionic relocation and meltwater percolation length at this site during the period 2007-2010. Using this method, a partial ion elution sequence obtained for Lomonosovfonna was NO(3)(-)aEuro-> aEuro-SO42-, Mg2+, Cl-, K+, Na+ with nitrate being the most mobile within the snowpack. The relocation length of most of the ions was on the order of 1aEuro-m during this period. In addition, by using both a positive degree day (PDD) and a snow-energy model approaches to estimate the percentage of melt at Lomonosovfonna, we have calculated a melt percentage (MP) of the total annual accumulation within the range between 48 and 70aEuro-%, for the period between 2007 and 2010, which is above the MP range suggested by the ion relocation evidenced in the LF-syn core (i.e., MPaEuro-aEuro parts per thousand= aEuro-30aEuro-%). Using a firn-densification model to constrain the melt range, a MP of 30aEuro-% was found over the same period, which is consistent with the results of the synthetic ice core approach, and a 45aEuro-% of melt for the last 60 years. Considering the ionic relocation lengths and annual melt percentages, we estimate that the atmospheric ionic signal remains preserved in recently drilled Lomonosovfonna ice cores at an annual or bi-annual resolution when weather conditions were similar to those during the 2007-2010 period.
  •  
45.
  • Vickers, Hannah, et al. (författare)
  • A compilation of snow cover datasets for Svalbard : A multi-sensor, multi-model study
  • 2021
  • Ingår i: Remote Sensing. - : MDPI. - 2072-4292. ; 13:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Reliable and accurate mapping of snow cover are essential in applications such as water resource management, hazard forecasting, calibration and validation of hydrological models and climate impact assessments. Optical remote sensing has been utilized as a tool for snow cover monitoring over the last several decades. However, consistent long-term monitoring of snow cover can be challenging due to differences in spatial resolution and retrieval algorithms of the different generations of satellite-based sensors. Snow models represent a complementary tool to remote sensing for snow cover monitoring, being able to fill in temporal and spatial data gaps where a lack of observations exist. This study utilized three optical remote sensing datasets and two snow models with overlapping periods of data coverage to investigate the similarities and discrepancies in snow cover estimates over Nordenskiöld Land in central Svalbard. High-resolution Sentinel-2 observations were utilized to calibrate a 20-year MODIS snow cover dataset that was subsequently used to correct snow cover fraction estimates made by the lower resolution AVHRR instrument and snow model datasets. A consistent overestimation of snow cover fraction by the lower resolution datasets was found, as well as estimates of the first snow-free day (FSFD) that were, on average, 10–15 days later when compared with the baseline MODIS estimates. Correction of the AVHRR time series produced a significantly slower decadal change in the land-averaged FSFD, indicating that caution should be exercised when interpreting climate-related trends from earlier lower resolution observations. Substantial differences in the dynamic characteristics of snow cover in early autumn were also present between the remote sensing and snow model datasets, which need to be investigated separately. This work demonstrates that the consistency of earlier low spatial resolution snow cover datasets can be improved by using current-day higher resolution datasets.
  •  
46.
  • Vickers, Hannah, et al. (författare)
  • An analysis of winter rain-on-snow climatology in Svalbard
  • 2024
  • Ingår i: Frontiers in Earth Science. - : Frontiers Media S.A.. - 2296-6463. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Rain-on-snow (ROS) events are becoming an increasingly common feature of the wintertime climate Svalbard in the High Arctic due to a warming climate. Changes in the frequency, intensity, and spatial distribution of wintertime ROS events in Svalbard are important to understand and quantify due their wide-ranging impacts on the physical environment as well as on human activity. Due to the sparse nature of ground observations across Svalbard, tools for mapping and long-term monitoring of ROS events over large spatial areas are reliant on remote sensing, snow models and atmospheric reanalyses. However, different methods of identifying and measuring ROS events can often present different interpretations of ROS climatology. This study compares a recently published Synthetic Aperture Radar (SAR) based ROS dataset for Svalbard to ROS derived from two snow models and a reanalysis dataset for 2004-2020. Although the number of ROS events differs across the datasets, all datasets exhibit both similarities and differences in the geographical distribution of ROS across the largest island, Spitsbergen. Southern and western coastal areas experience ROS most frequently during the wintertime, with the early winter (November-December) experiencing overall most events compared to the spring (March-April). Moreover, we find that different temperature thresholds are required to obtain the best spatial agreement of ROS events in the model and reanalysis datasets with ground observations. The reanalysis dataset evaluated against ground observations was superior to the other datasets in terms of accuracy due to the assimilation of ground observations into the dataset. The SAR dataset consistently scored lowest in terms of its overall accuracy due to many more false detections, an issue which is most likely explained by the persistence of moisture in the snowpack following the end of a ROS event. Our study not only highlights some spatial differences in ROS frequency and trends but also how comparisons between different datasets can confirm knowledge about the climatic variations across Svalbard where in-situ observations are sparse.
  •  
47.
  • Winsvold, Solveig, et al. (författare)
  • Using SAR data time-series for regional glacier mapping
  • 2018
  • Ingår i: The Cryosphere. - : European Geosciences Union (EGU). - 1994-0416 .- 1994-0424. ; 12:3, s. 867-890
  • Tidskriftsartikel (refereegranskat)abstract
    • With dense SAR satellite data time series it is possible to map surface and subsurface glacier properties that vary in time. On Sentinel-1A and RADARSAT-2 backscatter time series images over mainland Norway and Svalbard, we outline how to map glaciers using descriptive methods. We present five application scenarios. The first shows potential for tracking transient snow lines with SAR backscatter time series and correlates with both optical satellite images (Sentinel-2A and Landsat 8) and equilibrium line altitudes derived from in situ surface mass balance data. In the second application scenario, time series representation of glacier facies corresponding to SAR glacier zones shows potential for a more accurate delineation of the zones and how they change in time. The third application scenario investigates the firn evolution using dense SAR backscatter time series together with a coupled energy balance and multilayer firn model. We find strong correlation between backscatter signals with both the modeled firn air content and modeled wetness in the firn. In the fourth application scenario, we highlight how winter rain events can be detected in SAR time series, revealing important information about the area extent of internal accumulation. In the last application scenario, averaged summer SAR images were found to have potential in assisting the process of mapping glaciers outlines, especially in the presence of seasonal snow. Altogether we present examples of how to map glaciers and to further understand glaciological processes using the existing and future massive amount of multi-sensor time series data.
  •  
48.
  •  
49.
  • Zdanowicz, Christian, 1966-, et al. (författare)
  • Elemental and water-insoluble organic carbon in Svalbard snow: a synthesis of observations during 2007-2018
  • 2021
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 21:4, s. 3035-3057
  • Tidskriftsartikel (refereegranskat)abstract
    • Light-absorbing carbonaceous aerosols emitted by biomass or fossil fuel combustion can contribute to amplifying Arctic climate warming by lowering the albedo of snow. The Svalbard archipelago, being near to Europe and Russia, is particularly affected by these pollutants, and improved knowledge of their distribution in snow is needed to assess their impact. Here we present and synthesize new data obtained on Svalbard between 2007 and 2018, comprising measurements of elemental (EC) and water-insoluble organic carbon (WIOC) in snow from 37 separate sites. We used these data, combined with meteorological data and snowpack modeling, to investigate the variability of EC and WIOC deposition in Svalbard snow across latitude, longitude, elevation and time. Overall, EC concentrations (C-snow(EC)) ranged from < 1.0 to 266.6 ng g(-1), while WIOC concentrations (C-snow(WIOC)) ranged from < 1 to 9426 ng g(-1), with the highest values observed near Ny-Alesund. Calculated snowpack loadings (L-snow(EC), L-snow(WIOC)) on glaciers surveyed in spring 2016 were 0.1 to 2.6 mg m(-2) and 2 to 173 mg m(-2), respectively. The median C-snow(EC) and the L-snow(EC) on those glaciers were close to or lower than those found in earlier (2007- 2009), comparable surveys. Both L-snow(EC) and L(snow)(WIOC )increased with elevation and snow accumulation, with dry deposition likely playing a minor role. Estimated area-averaged snowpack loads across Svalbard were 1.1 mg EC m(-2) and 38.3 mg WIOC m(-2) for the 2015-2016 winter. An similar to 11-year long dataset of spring surface snow measurements from the central BrOgger Peninsula was used to quantify the interannual variability of EC and WIOC deposition in snow. In most years, C-snow(EC) and C-snow(WIOC) at Ny-Alesund (50 m a.s.l.) were 2-5 times higher than on the nearby Austre Brogger-breen glacier (456 m a.s.l.), and the median EC/WIOC in Ny-Alesund was 6 times higher, suggesting a possible influence of local EC emission from Ny-Alesund. While no long-term trends between 2011 and 2018 were found, C-snow(EC) and C-snow(WIOC) showed synchronous variations at Ny-Alesund and Austre Broggerbreen. When compared with data from other circum-Arctic sites obtained by comparable methods, the median C(snow)(EC)on Svalbard falls between that found in central Greenland (lowest) and those in continental sectors of European Arctic (northern Scandinavia, Russia and Siberia; highest), which is consistent with large-scale patterns of BC in snow reported by surveys based on other methods.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-49 av 49
Typ av publikation
tidskriftsartikel (40)
bokkapitel (4)
annan publikation (2)
rapport (1)
doktorsavhandling (1)
forskningsöversikt (1)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (45)
övrigt vetenskapligt/konstnärligt (3)
Författare/redaktör
Van Pelt, Ward (37)
Pettersson, Rickard (16)
Kohler, Jack (15)
van Pelt, Ward J. J. (12)
Pohjola, Veijo, 1960 ... (8)
Machguth, Horst (6)
visa fler...
Reijmer, Carleen (6)
Marchenko, Sergey (6)
Pohjola, Veijo A, 19 ... (4)
Hagen, Jon Ove (4)
Luks, Bartlomiej (4)
Malnes, Eirik (4)
Isaksson, Elisabeth (3)
Schuler, Thomas (3)
Schuler, Thomas V. (3)
Benn, Douglas I. (3)
Nuth, Christopher (3)
Pohjola, Veijo (3)
Pohjola, Veijo A. (3)
Luks, Bartek (3)
Killie, Mari Anne (3)
Zhang, Jie (2)
Huss, Matthias (2)
Vallot, Dorothée (2)
Zwinger, Thomas (2)
Morlighem, Mathieu (2)
Frank, Thomas (2)
Gallet, J. C. (2)
Zdanowicz, Christian ... (2)
Moholdt, Geir (2)
Isaksen, Ketil (2)
Vega, Carmen P. (2)
Claremar, Björn (2)
Lindbäck, Katrin (2)
Farinotti, Daniel (2)
Gantayat, Prateek (2)
Gillet-Chaulet, Fabi ... (2)
Pandit, Ankur (2)
Rabatel, Antoine (2)
Li, Huilin (2)
Luckman, Adrian (2)
Luckman, Adrien (2)
Boot, Wim (2)
Ignatiuk, Dariusz (2)
Dunse, Thorben (2)
Karlsen, Stein Rune (2)
Kääb, Andreas (2)
Reijmer, Carleen H. (2)
Kronenberg, Marlene (2)
Hoelzle, Martin (2)
visa färre...
Lärosäte
Uppsala universitet (49)
Stockholms universitet (2)
Göteborgs universitet (1)
Kungliga Tekniska Högskolan (1)
Språk
Engelska (49)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (49)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy