SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(van de Water Bob) "

Sökning: WFRF:(van de Water Bob)

  • Resultat 1-12 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Leist, Marcel, et al. (författare)
  • Adverse outcome pathways : opportunities, limitations and open questions
  • 2017
  • Ingår i: Archives of Toxicology. - : Springer Science and Business Media LLC. - 0340-5761 .- 1432-0738. ; 91:11, s. 3477-3505
  • Tidskriftsartikel (refereegranskat)abstract
    • Adverse outcome pathways (AOPs) are a recent toxicological construct that connects, in a formalized, transparent and quality-controlled way, mechanistic information to apical endpoints for regulatory purposes. AOP links a molecular initiating event (MIE) to the adverse outcome (AO) via key events (KE), in a way specified by key event erelationships (KER). Although this approach to formalize mechanistic toxicological information only started in 2010, over 200 AOPs have already been established. At this stage, new requirements arise, such as the need for harmonization and re-assessment, for continuous updating, as well as for alerting about pitfalls, misuses and limits of applicability. In this review, the history of the AOP concept and its most prominent strengths are discussed, including the advantages of a formalized approach, the systematic collection of weight of evidence, the linkage of mechanisms to apical end points, the examination of the plausibility of epidemiological data, the identification of critical knowledge gaps and the design of mechanistic test methods. To prepare the ground for a broadened and appropriate use of AOPs, some widespread misconceptions are explained. Moreover, potential weaknesses and shortcomings of the current AOP rule set are addressed (1) to facilitate the discussion on its further evolution and (2) to better define appropriate vs. less suitable application areas. Exemplary toxicological studies are presented to discuss the linearity assumptions of AOP, the management of event modifiers and compensatory mechanisms, and whether a separation of toxicodynamics from toxicokinetics including metabolism is possible in the framework of pathway plasticity. Suggestions on how to compromise between different needs of AOP stakeholders have been added. A clear definition of open questions and limitations is provided to encourage further progress in the field.
  •  
2.
  • Bopp, Stephanie K., et al. (författare)
  • Current EU research activities on combined exposure to multiple chemicals
  • 2018
  • Ingår i: Environment International. - : Elsevier. - 0160-4120 .- 1873-6750. ; 120, s. 544-562
  • Forskningsöversikt (refereegranskat)abstract
    • Humans and wildlife are exposed to an intractably large number of different combinations of chemicals via food, water, air, consumer products, and other media and sources. This raises concerns about their impact on public and environmental health. The risk assessment of chemicals for regulatory purposes mainly relies on the assessment of individual chemicals. If exposure to multiple chemicals is considered in a legislative framework, it is usually limited to chemicals falling within this framework and co-exposure to chemicals that are covered by a different regulatory framework is often neglected. Methodologies and guidance for assessing risks from combined exposure to multiple chemicals have been developed for different regulatory sectors, however, a harmonised, consistent approach for performing mixture risk assessments and management across different regulatory sectors is lacking. At the time of this publication, several EU research projects are running, funded by the current European Research and Innovation Programme Horizon 2020 or the Seventh Framework Programme. They aim at addressing knowledge gaps and developing methodologies to better assess chemical mixtures, by generating and making available internal and external exposure data, developing models for exposure assessment, developing tools for in silico and in vitro effect assessment to be applied in a tiered framework and for grouping of chemicals, as well as developing joint epidemiological-toxicological approaches for mixture risk assessment and for prioritising mixtures of concern. The projects EDC-MixRisk, EuroMix, EUToxRisk, HBM4EU and SOLUTIONS have started an exchange between the consortia, European Commission Services and EU Agencies, in order to identify where new methodologies have become available and where remaining gaps need to be further addressed. This paper maps how the different projects contribute to the data needs and assessment methodologies and identifies remaining challenges to be further addressed for the assessment of chemical mixtures.
  •  
3.
  • Delp, Johannes, et al. (författare)
  • Neurotoxicity and underlying cellular changes of 21 mitochondrial respiratory chain inhibitors
  • 2021
  • Ingår i: Archives of Toxicology. - : Springer. - 0340-5761 .- 1432-0738. ; 95:2, s. 591-615
  • Tidskriftsartikel (refereegranskat)abstract
    • Inhibition of complex I of the mitochondrial respiratory chain (cI) by rotenone and methyl-phenylpyridinium (MPP +) leads to the degeneration of dopaminergic neurons in man and rodents. To formally describe this mechanism of toxicity, an adverse outcome pathway (AOP:3) has been developed that implies that any inhibitor of cI, or possibly of other parts of the respiratory chain, would have the potential to trigger parkinsonian motor deficits. We used here 21 pesticides, all of which are described in the literature as mitochondrial inhibitors, to study the general applicability of AOP:3 or of in vitro assays that are assessing its activation. Five cI, three complex II (cII), and five complex III (cIII) inhibitors were characterized in detail in human dopaminergic neuronal cell cultures. The NeuriTox assay, examining neurite damage in LUHMES cells, was used as in vitro proxy of the adverse outcome (AO), i.e., of dopaminergic neurodegeneration. This test provided data on whether test compounds were unspecific cytotoxicants or specifically neurotoxic, and it yielded potency data with respect to neurite degeneration. The pesticide panel was also examined in assays for the sequential key events (KE) leading to the AO, i.e., mitochondrial respiratory chain inhibition, mitochondrial dysfunction, and disturbed proteostasis. Data from KE assays were compared to the NeuriTox data (AO). The cII-inhibitory pesticides tested here did not appear to trigger the AOP:3 at all. Some of the cI/cIII inhibitors showed a consistent AOP activation response in all assays, while others did not. In general, there was a clear hierarchy of assay sensitivity: changes of gene expression (biomarker of neuronal stress) correlated well with NeuriTox data; mitochondrial failure (measured both by a mitochondrial membrane potential-sensitive dye and a respirometric assay) was about 10-260 times more sensitive than neurite damage (AO); cI/cIII activity was sometimes affected at > 1000 times lower concentrations than the neurites. These data suggest that the use of AOP:3 for hazard assessment has a number of caveats: (i) specific parkinsonian neurodegeneration cannot be easily predicted from assays of mitochondrial dysfunction; (ii) deriving a point-of-departure for risk assessment from early KE assays may overestimate toxicant potency.
  •  
4.
  • Escher, Sylvia E., et al. (författare)
  • Integrate mechanistic evidence from new approach methodologies (NAMs) into a read-across assessment to characterise trends in shared mode of action
  • 2022
  • Ingår i: Toxicology in Vitro. - : Elsevier. - 0887-2333 .- 1879-3177. ; 79
  • Tidskriftsartikel (refereegranskat)abstract
    • Read-across approaches often remain inconclusive as they do not provide sufficient evidence on a common mode of action across the category members. This read-across case study on thirteen, structurally similar, branched aliphatic carboxylic acids investigates the concept of using human-based new approach methods, such as in vitro and in silico models, to demonstrate biological similarity.Five out of the thirteen analogues have preclinical in vivo studies. Three out of them induced lipid accumulation or hypertrophy in preclinical studies with repeated exposure, which leads to the read-across hypothesis that the analogues can potentially induce hepatic steatosis.To confirm the selection of analogues, the expression patterns of the induced differentially expressed genes (DEGs) were analysed in a human liver model. With increasing dose, the expression pattern within the tested analogues got more similar, which serves as a first indication of a common mode of action and suggests differences in the potency of the analogues.Hepatic steatosis is a well-known adverse outcome, for which over 55 adverse outcome pathways have been identified. The resulting adverse outcome pathway (AOP) network, comprised a total 43 MIEs/KEs and enabled the design of an in vitro testing battery. From the AOP network, ten MIEs, early and late KEs were tested to systematically investigate a common mode of action among the grouped compounds.The targeted testing of AOP specific MIE/KEs shows that biological activity in the category decreases with side chain length. A similar trend was evident in measuring liver alterations in zebra fish embryos. However, activation of single MIEs or early KEs at in vivo relevant doses did not necessarily progress to the late KE “lipid accumulation”. KEs not related to the read-across hypothesis, testing for example general mitochondrial stress responses in liver cells, showed no trend or biological similarity.Testing scope is a key issue in the design of in vitro test batteries. The Dempster-Shafer decision theory predicted those analogues with in vivo reference data correctly using one human liver model or the CALUX reporter assays.The case study shows that the read-across hypothesis is the key element to designing the testing strategy. In the case of a good mechanistic understanding, an AOP facilitates the selection of reliable human in vitro models to demonstrate a common mode of action. Testing DEGs, MIEs and early KEs served to show biological similarity, whereas the late KEs become important for confirmation, as progression from MIEs to AO is not always guaranteed.
  •  
5.
  • Krebs, Alice, et al. (författare)
  • The EU-ToxRisk method documentation, data processing and chemical testing pipeline for the regulatory use of new approach methods
  • 2020
  • Ingår i: Archives of Toxicology. - : Springer Science and Business Media LLC. - 0340-5761 .- 1432-0738. ; 94:7, s. 2435-2461
  • Tidskriftsartikel (refereegranskat)abstract
    • Hazard assessment, based on new approach methods (NAM), requires the use of batteries of assays, where individual tests may be contributed by different laboratories. A unified strategy for such collaborative testing is presented. It details all procedures required to allow test information to be usable for integrated hazard assessment, strategic project decisions and/or for regulatory purposes. The EU-ToxRisk project developed a strategy to provide regulatorily valid data, and exemplified this using a panel of > 20 assays (with > 50 individual endpoints), each exposed to 19 well-known test compounds (e.g. rotenone, colchicine, mercury, paracetamol, rifampicine, paraquat, taxol). Examples of strategy implementation are provided for all aspects required to ensure data validity: (i) documentation of test methods in a publicly accessible database; (ii) deposition of standard operating procedures (SOP) at the European Union DB-ALM repository; (iii) test readiness scoring accoding to defined criteria; (iv) disclosure of the pipeline for data processing; (v) link of uncertainty measures and metadata to the data; (vi) definition of test chemicals, their handling and their behavior in test media; (vii) specification of the test purpose and overall evaluation plans. Moreover, data generation was exemplified by providing results from 25 reporter assays. A complete evaluation of the entire test battery will be described elsewhere. A major learning from the retrospective analysis of this large testing project was the need for thorough definitions of the above strategy aspects, ideally in form of a study pre-registration, to allow adequate interpretation of the data and to ensure overall scientific/toxicological validity.
  •  
6.
  • Béquignon, Olivier J. M., et al. (författare)
  • Collaborative SAR Modeling and Prospective In Vitro Validation of Oxidative Stress Activation in Human HepG2 Cells
  • 2023
  • Ingår i: Journal of Chemical Information and Modeling. - : American Chemical Society (ACS). - 1549-9596 .- 1549-960X. ; 63:17, s. 5433-5445
  • Tidskriftsartikel (refereegranskat)abstract
    • Oxidative stress is the consequence of an abnormal increase of reactive oxygen species (ROS). ROS are generated mainly during the metabolism in both normal and pathological conditions as well as from exposure to xenobiotics. Xenobiotics can, on the one hand, disrupt molecular machinery involved in redox processes and, on the other hand, reduce the effectiveness of the antioxidant activity. Such dysregulation may lead to oxidative damage when combined with oxidative stress overpassing the cell capacity to detoxify ROS. In this work, a green fluorescent protein (GFP)-tagged nuclear factor erythroid 2-related factor 2 (NRF2)-regulated sulfiredoxin reporter (Srxn1-GFP) was used to measure the antioxidant response of HepG2 cells to a large series of drug and drug-like compounds (2230 compounds). These compounds were then classified as positive or negative depending on cellular response and distributed among different modeling groups to establish structure-activity relationship (SAR) models. A selection of models was used to prospectively predict oxidative stress induced by a new set of compounds subsequently experimentally tested to validate the model predictions. Altogether, this exercise exemplifies the different challenges of developing SAR models of a phenotypic cellular readout, model combination, chemical space selection, and results interpretation.
  •  
7.
  • Carta, Giada, et al. (författare)
  • Transcriptional landscape of mitochondrial electron transport chain inhibition in renal cells
  • 2023
  • Ingår i: Cell Biology and Toxicology. - 0742-2091 .- 1573-6822. ; 39, s. 3031-3059
  • Tidskriftsartikel (refereegranskat)abstract
    • Analysis of the transcriptomic alterations upon chemical challenge, provides in depth mechanistic information on the compound’s toxic mode of action, by revealing specific pathway activation and other transcriptional modulations. Mapping changes in cellular behaviour to chemical insult, facilitates the characterisation of chemical hazard. In this study, we assessed the transcriptional landscape of mitochondrial impairment through the inhibition of the electron transport chain (ETC) in a human renal proximal tubular cell line (RPTEC/TERT1). We identified the unfolded protein response pathway (UPR), particularly the PERK/ATF4 branch as a common cellular response across ETC I, II and III inhibitions. This finding and the specific genes elaborated may aid the identification of mitochondrial liabilities of chemicals in both legacy data and prospective transcriptomic studies.
  •  
8.
  • Delp, Johannes, et al. (författare)
  • Development of a neurotoxicity assay that is tuned to detect mitochondrial toxicants
  • 2019
  • Ingår i: Archives of Toxicology. - : Springer Science and Business Media LLC. - 0340-5761 .- 1432-0738. ; 93:6, s. 1585-1608
  • Tidskriftsartikel (refereegranskat)abstract
    • Many neurotoxicants affect energy metabolism in man, but currently available test methods may still fail to predict mito- and neurotoxicity. We addressed this issue using LUHMES cells, i.e., human neuronal precursors that easily differentiate into mature neurons. Within the NeuriTox assay, they have been used to screen for neurotoxicants. Our new approach is based on culturing the cells in either glucose or galactose (Glc-Gal-NeuriTox) as the main carbohydrate source during toxicity testing. Using this Glc-Gal-NeuriTox assay, 52 mitochondrial and non-mitochondrial toxicants were tested. The panel of chemicals comprised 11 inhibitors of mitochondrial respiratory chain complex I (cI), 4 inhibitors of cII, 8 of cIII, and 2 of cIV; 8 toxicants were included as they are assumed to be mitochondrial uncouplers. In galactose, cells became more dependent on mitochondrial function, which made them 2-3 orders of magnitude more sensitive to various mitotoxicants. Moreover, galactose enhanced the specific neurotoxicity (destruction of neurites) compared to a general cytotoxicity (plasma membrane lysis) of the toxicants. The Glc-Gal-NeuriTox assay worked particularly well for inhibitors of cI and cIII, while the toxicity of uncouplers and non-mitochondrial toxicants did not differ significantly upon glucose <-> galactose exchange. As a secondary assay, we developed a method to quantify the inhibition of all mitochondrial respiratory chain functions/complexes in LUHMES cells. The combination of the Glc-Gal-NeuriTox neurotoxicity screening assay with the mechanistic follow up of target site identification allowed both, a more sensitive detection of neurotoxicants and a sharper definition of the mode of action of mitochondrial toxicants.
  •  
9.
  • Grinberg, Marianna, et al. (författare)
  • Toxicogenomics directory of chemically exposed human hepatocytes
  • 2014
  • Ingår i: Archives of Toxicology. - : Springer Science and Business Media LLC. - 1432-0738 .- 0340-5761. ; 88:12, s. 2261-2287
  • Tidskriftsartikel (refereegranskat)abstract
    • A long-term goal of numerous research projects is to identify biomarkers for in vitro systems predicting toxicity in vivo. Often, transcriptomics data are used to identify candidates for further evaluation. However, a systematic directory summarizing key features of chemically influenced genes in human hepatocytes is not yet available. To bridge this gap, we used the Open TG-GATES database with Affymetrix files of cultivated human hepatocytes incubated with chemicals, further sets of gene array data with hepatocytes from human donors generated in this study, and publicly available genome-wide datasets of human liver tissue from patients with non-alcoholic steatohepatitis (NASH), cirrhosis, and hepatocellular cancer (HCC). After a curation procedure, expression data of 143 chemicals were included into a comprehensive biostatistical analysis. The results are summarized in the publicly available toxicotranscriptomics directory (http://wiki.toxbank.net/toxicogenomics-map/) which provides information for all genes whether they are up- or downregulated by chemicals and, if yes, by which compounds. The directory also informs about the following key features of chemically influenced genes: (1) Stereotypical stress response. When chemicals induce strong expression alterations, this usually includes a complex but highly reproducible pattern named 'stereotypical response.' On the other hand, more specific expression responses exist that are induced only by individual compounds or small numbers of compounds. The directory differentiates if the gene is part of the stereotypical stress response or if it represents a more specific reaction. (2) Liver disease-associated genes. Approximately 20 % of the genes influenced by chemicals are up- or downregulated, also in liver disease. Liver disease genes deregulated in cirrhosis, HCC, and NASH that overlap with genes of the aforementioned stereotypical chemical stress response include CYP3A7, normally expressed in fetal liver; the phase II metabolizing enzyme SULT1C2; ALDH8A1, known to generate the ligand of RXR, one of the master regulators of gene expression in the liver; and several genes involved in normal liver functions: CPS1, PCK1, SLC2A2, CYP8B1, CYP4A11, ABCA8, and ADH4. (3) Unstable baseline genes. The process of isolating and the cultivation of hepatocytes was sufficient to induce some stress leading to alterations in the expression of genes, the so-called unstable baseline genes. (4) Biological function. Although more than 2,000 genes are transcriptionally influenced by chemicals, they can be assigned to a relatively small group of biological functions, including energy and lipid metabolism, inflammation and immune response, protein modification, endogenous and xenobiotic metabolism, cytoskeletal organization, stress response, and DNA repair. In conclusion, the introduced toxicotranscriptomics directory offers a basis for a rationale choice of candidate genes for biomarker evaluation studies and represents an easy to use source of background information on chemically influenced genes.
  •  
10.
  • van der Stel, Wanda, et al. (författare)
  • Mapping the cellular response to electron transport chain inhibitors reveals selective signaling networks triggered by mitochondrial perturbation
  • 2022
  • Ingår i: Archives of Toxicology. - : Springer Science and Business Media LLC. - 0340-5761 .- 1432-0738. ; 96:1, s. 259-285
  • Tidskriftsartikel (refereegranskat)abstract
    • Mitochondrial perturbation is a key event in chemical-induced organ toxicities that is incompletely understood. Here, we studied how electron transport chain (ETC) complex I, II, or III (CI, CII and CIII) inhibitors affect mitochondrial functionality, stress response activation, and cell viability using a combination of high-content imaging and TempO-Seq in HepG2 hepatocyte cells. CI and CIII inhibitors perturbed mitochondrial membrane potential (MMP) and mitochondrial and cellular ATP levels in a concentration- and time-dependent fashion and, under conditions preventing a switch to glycolysis attenuated cell viability, whereas CII inhibitors had no effect. TempO-Seq analysis of changes in mRNA expression pointed to a shared cellular response to CI and CIII inhibition. First, to define specific ETC inhibition responses, a gene set responsive toward ETC inhibition (and not to genotoxic, oxidative, or endoplasmic reticulum stress) was identified using targeted TempO-Seq in HepG2. Silencing of one of these genes, NOS3, exacerbated the impact of CI and CIII inhibitors on cell viability, indicating its functional implication in cellular responses to mitochondrial stress. Then by monitoring dynamic responses to ETC inhibition using a HepG2 GFP reporter panel for different classes of stress response pathways and applying pathway and gene network analysis to TempO-Seq data, we looked for downstream cellular events of ETC inhibition and identified the amino acid response (AAR) as being triggered in HepG2 by ETC inhibition. Through in silico approaches we provide evidence indicating that a similar AAR is associated with exposure to mitochondrial toxicants in primary human hepatocytes. Altogether, we (i) unravel quantitative, time- and concentration-resolved cellular responses to mitochondrial perturbation, (ii) identify a gene set associated with adaptation to exposure to active ETC inhibitors, and (iii) show that ER stress and an AAR accompany ETC inhibition in HepG2 and primary hepatocytes. 
  •  
11.
  • van der Stel, Wanda, et al. (författare)
  • Multiparametric assessment of mitochondrial respiratory inhibition in HepG2 and RPTEC/TERT1 cells using a panel of mitochondrial targeting agrochemicals
  • 2020
  • Ingår i: Archives of Toxicology. - : Springer Science and Business Media LLC. - 0340-5761 .- 1432-0738. ; 94:8, s. 2707-2729
  • Tidskriftsartikel (refereegranskat)abstract
    • Evidence is mounting for the central role of mitochondrial dysfunction in several pathologies including metabolic diseases, accelerated ageing, neurodegenerative diseases and in certain xenobiotic-induced organ toxicity. Assessing mitochondrial perturbations is not trivial and the outcomes of such investigations are dependent on the cell types used and assays employed. Here we systematically investigated the effect of electron transport chain (ETC) inhibitors on multiple mitochondrial-related parameters in two human cell types, HepG2 and RPTEC/TERT1. Cells were exposed to a broad range of concentrations of 20 ETC-inhibiting agrochemicals and capsaicin, consisting of inhibitors of NADH dehydrogenase (Complex I, CI), succinate dehydrogenase (Complex II, CII) and cytochrome bc1 complex (Complex III, CIII). A battery of tests was utilised, including viability assays, lactate production, mitochondrial membrane potential (MMP) and the Seahorse bioanalyser, which simultaneously measures extracellular acidification rate [ECAR] and oxygen consumption rate [OCR]. CI inhibitors caused a potent decrease in OCR, decreased mitochondrial membrane potential, increased ECAR and increased lactate production in both cell types. Twenty-fourhour exposure to CI inhibitors decreased viability of RPTEC/TERT1 cells and 3D spheroid-cultured HepG2 cells in the presence of glucose. CI inhibitors decreased 2D HepG2 viability only in the absence of glucose. CII inhibitors had no notable effects in intact cells up to 10 mu M. CIII inhibitors had similar effects to the CI inhibitors. Antimycin A was the most potent CIII inhibitor, with activity in the nanomolar range. The proposed CIII inhibitor cyazofamid demonstrated a mitochondrial uncoupling signal in both cell types. The study presents a comprehensive example of a mitochondrial assessment workflow and establishes measurable key events of ETC inhibition.
  •  
12.
  • van der Stel, Wanda, et al. (författare)
  • New Approach Methods (NAMs) Supporting Read-Across : Two Neurotoxicity AOP-based IATA Case Studies
  • 2021
  • Ingår i: Altex. - : ALTEX Edition. - 1868-596X .- 1868-8551. ; 38:4, s. 615-635
  • Tidskriftsartikel (refereegranskat)abstract
    • Read-across approaches are considered key in moving away from in vivo animal testing towards addressing data-gaps using new approach methods (NAMs). Ample successful examples are still required to substantiate this strategy. Here we present and discuss the learnings from two OECD IATA endorsed read-across case studies. They involve two classes of pesticides - rotenoids and strobilurins - each having a defined mode-of-action that is assessed for its neurological hazard by means of an AOP-based testing strategy coupled to toxicokinetic simulations of human tissue concentrations. The endpoint in question is potential mitochondrial respiratory chain mediated neurotoxicity, specifically through inhibition of complex I or III. An AOP linking inhibition of mitochondrial respiratory chain complex I to the degeneration of dopaminergic neurons formed the basis for both cases but was deployed in two different regulatory contexts. The two cases also exemplify several different read-across concepts: analogue versus category approach, consolidated versus putative AOP, positive versus negative prediction (i.e., neurotoxicity versus low potential for neurotoxicity), and structural versus biological similarity. We applied a range of NAMs to explore the toxicodynamic properties of the compounds, e.g., in silico docking as well as in vitro assays and readouts - including transcriptomics - in various cell systems, all anchored to the relevant AOPs. Interestingly, although some of the data addressing certain elements of the read-across were associated with high uncertainty, their impact on the overall read-across conclusion remained limited. Coupled to the elaborate regulatory review that the two cases underwent, we propose some generic learnings of AOP-based testing strategies supporting read-across.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-12 av 12
Typ av publikation
tidskriftsartikel (11)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (12)
Författare/redaktör
van de Water, Bob (11)
Forsby, Anna (6)
Pastor, Manuel (3)
Gadaleta, Domenico (3)
Braunbeck, Thomas (3)
Norinder, Ulf, 1956- (2)
visa fler...
Cediel Ulloa, Andrea (2)
Wink, Steven (2)
Dinnyés, András (1)
Mardinoglu, Adil, 19 ... (1)
Meijer, Annemarie H. (1)
Moritz, Wolfgang (1)
Rüegg, Joelle (1)
Aguayo-Orozco, Aleja ... (1)
Faust, Michael (1)
Carmo, Helena (1)
Oesch, Franz (1)
Edlund, K. (1)
Attoff, Kristina (1)
Lundqvist, Jessica (1)
Bergman, Åke, 1950- (1)
van Thriel, Christop ... (1)
Kephalopoulos, Styli ... (1)
Barouki, Robert (1)
Béquignon, Olivier J ... (1)
Gómez-Tamayo, Jose C ... (1)
Lenselink, Eelke B. (1)
Hiemstra, Steven (1)
Lam, Chi Chung (1)
Roncaglioni, Alessan ... (1)
Water, Bob van de (1)
van Westen, Gerard J ... (1)
Kleinjans, Jos C.S. (1)
Kortenkamp, Andreas (1)
Willighagen, Egon (1)
Ecker, Gerhard (1)
Kumar, Manoj (1)
Bopp, Stephanie K. (1)
Brack, Werner (1)
Dalla Costa, Silvia (1)
Dorne, Jean-Lou C. M ... (1)
Drakvik, Paula E. (1)
Karjalainen, Tuomo K ... (1)
van Klaveren, Jacob (1)
Kolossa-Gehring, Mar ... (1)
Lebret, Erik (1)
Lettieri, Teresa (1)
Nørager, Sofie (1)
Tarazona, Jose V. (1)
Trier, Xenia (1)
visa färre...
Lärosäte
Stockholms universitet (7)
Karolinska Institutet (5)
Örebro universitet (3)
Uppsala universitet (2)
Chalmers tekniska högskola (1)
Språk
Engelska (12)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (8)
Naturvetenskap (6)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy