SwePub
Sök i SwePub databas

  Utökad sökning

Booleska operatorer måste skrivas med VERSALER

AND är defaultoperator och kan utelämnas

Träfflista för sökning "hsv:(ENGINEERING AND TECHNOLOGY) hsv:(Materials Engineering) hsv:(Paper Pulp and Fiber Technology) "

Sökning: hsv:(ENGINEERING AND TECHNOLOGY) hsv:(Materials Engineering) hsv:(Paper Pulp and Fiber Technology)

  • Resultat 1-50 av 2447
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lindberg, Siv M, et al. (författare)
  • A product semantic study of the influence of the sense of touch on the evaluation of wood-based materials
  • 2013
  • Ingår i: Materials & design. - : Elsevier BV. - 0264-1275 .- 1873-4197 .- 0261-3069. ; 52, s. 300-307
  • Tidskriftsartikel (refereegranskat)abstract
    • Based on product semantics, this study investigated how the tactile attributes of wood and wood-based composites are perceived and interpreted semantically. The wood-based samples included ash, birch, elm, oak, pine, OSB (oriented strand board), two wood pulp-reinforced polylactide composites, Comp A and B and one wood-fiber reinforced polypropene composite, Comp C. The subjects rated the samples by the descriptive words natural, exclusive, eco-. friendly, rough, inexpensive, reliable, warm, modern, snug and solid. The most significant differences between the samples were found for roughness and for the descriptors, reliable, natural and solid. A principal component analysis yielded three attributes based on the tactile perceptions: reliable, old-. fashioned and smooth. The solid wood pieces were perceived as natural and oak was perceived as being exclusive. The composite materials presented a greater variation in terms of perceived attributes than the wood specimens.
  •  
2.
  • Chen, Zhe, et al. (författare)
  • Nano-scale characterization of white layer in broached Inconel 718
  • 2017
  • Ingår i: Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing. - Amsterdam : Elsevier BV. - 0921-5093 .- 1873-4936. ; 684, s. 373-384
  • Tidskriftsartikel (refereegranskat)abstract
    • The formation mechanism of white layers during broaching and their mechanical properties are not well investigated and understood to date. In the present study, multiple advanced characterization techniques with nano-scale resolution, including transmission electron microscopy (TEM), transmission Kikuchi diffraction (TKD), atom probe tomography (APT) as well as nano-indentation, have been used to systematically examine the microstructural evolution and corresponding mechanical properties of a surface white layer formed when broaching the nickel-based superalloy Inconel 718.TEM observations showed that the broached white layer consists of nano-sized grains, mostly in the range of 20–50 nm. The crystallographic texture detected by TKD further revealed that the refined microstructure is primarily caused by strong shear deformation. Co-located Al-rich and Nb-rich fine clusters have been identified by APT, which are most likely to be γ′ and γ′′ clusters in a form of co-precipitates, where the clusters showed elongated and aligned appearance associated with the severe shearing history. The microstructural characteristics and crystallography of the broached white layer suggest that it was essentially formed by adiabatic shear localization in which the dominant metallurgical process is rotational dynamic recrystallization based on mechanically-driven subgrain rotations. The grain refinement within the white layer led to an increase of the surface nano-hardness by 14% and a reduction in elastic modulus by nearly 10% compared to that of the bulk material. This is primarily due to the greatly increased volume fraction of grain boundaries, when the grain size was reduced down to the nanoscale.
  •  
3.
  • Duan, Shanghong, 1992, et al. (författare)
  • Determination of transverse and shear moduli of single carbon fibres
  • 2020
  • Ingår i: Carbon. - : Elsevier BV. - 0008-6223 .- 1873-3891. ; 158C, s. 772-782
  • Tidskriftsartikel (refereegranskat)abstract
    • Carbon fibres are extensively used for their high specific mechanical properties. Exploiting their high axial stiffness and strength, they are employed to reinforce polymer matrix materials in advanced composites. However, carbon fibres are not isotropic. Data of the elastic properties in the other directions of the fibres are still largely unknown. Furthermore, standardised methods to characterise these properties are lacking. In the present work, we propose a methodology to determine the transverse and shear moduli of single carbon fibres. An experimental procedure is developed to fabricate high-quality, flat fibre cross-sections in both longitudinal and transverse directions using Focused Ion Beam, which gives full control of the specimen geometry. Indentation modulus on those surfaces are obtained using both Atomic Force Microscopy (AFM) and nanoindentation tests. Hysteresis was found to occur in the nanoindentation tests. The hysteresis response was due to nano-buckling and reversible shear deformation of the carbon crystals. For this reason, indentation tests using AFM is recommended. From the AFM indentation tests the transverse and shear moduli of three different carbon fibres (IMS65, T800 and M60J) are successfully determined.
  •  
4.
  • Johansen, Marcus, 1994, et al. (författare)
  • Mapping nitrogen heteroatoms in carbon fibres using atom probe tomography and photoelectron spectroscopy
  • 2021
  • Ingår i: Carbon. - : Elsevier BV. - 0008-6223. ; 179, s. 20-27
  • Tidskriftsartikel (refereegranskat)abstract
    • Carbon fibres show great potential as multifunctional negative electrode for novel structural battery composites – a rechargeable electrochemical cell with structural function. The electrochemical performance of carbon materials can be enhanced with nitrogen heteroatoms, which conveniently are inherent in polyacrylonitrile (PAN)-based carbon fibres. However, it is not fully understood how the electrochemical performance is governed by microstructure and composition of the carbon fibres, particularly the distribution and chemical states of nitrogen heteroatoms. Here we reveal the atom-by-atom three-dimensional spatial distribution and the chemical states of nitrogen in three PAN-carbon fibre types (M60J, T800 and IMS65), using atom probe tomography (APT) and synchrotron hard X-ray photoelectron spectroscopy (HAXPES), and correlate the results to electrochemical performance. The findings pave the way for future tailoring of carbon fibre microstructure for multifunctional applications.
  •  
5.
  • Johansen, Marcus, 1994 (författare)
  • Microstructure of Carbon Fibres for Multifunctional Composites: 3D Distribution and Configuration of Atoms
  • 2021
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Lightweight energy storage is a must for increased driving range of electric vehicles. “Mass-less” energy storage can be achieved by directly storing energy in structural components. In such multifunctional devices called structural composite batteries, carbon fibres carry mechanical load and simultaneously act as negative battery electrode by hosting lithium ions in its microstructure. Little is known of how the microstructure of carbon fibres is optimised for multifunctionality, and deeper understanding of the configuration and the distribution of atoms in carbon fibres is needed. Here synchrotron hard X-ray photoelectron spectroscopy and atom probe tomography are used to reveal the chemical states and three-dimensional distribution of atoms in commercial carbon fibres. This thesis presents the first ever guide for how to perform atom probe tomography on carbon fibres, and the first ever three-dimensional atomic reconstruction of a carbon fibre. The results show that the chemical states and distribution of nitrogen heteroatoms in carbon fibres affect the electrochemical performance of the fibres. Carbon fibres performed electrochemically better with higher amount of nitrogen with pyridinic and pyrrolic configurations. Additionally, the nitrogen concentration varies throughout the carbon fibre, which may suggest that the electrochemical properties also vary throughout the carbon fibre. The knowledge provided by this thesis can lead to future carbon fibre designs with enhanced electrochemical performance for multifunctional applications.
  •  
6.
  •  
7.
  • Forsgren, Lilian, 1990 (författare)
  • Processing and properties of thermoplastic composites containing cellulose nanocrystals or wood-based cellulose fibres
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Cellulose nanocrystals (CNC) were surface modified with dialkylamines to increase the compatibility between the CNC and the polymeric matrix, and promising results were obtained, with a 300 % stiffness increase when the mixed dispersion was compression moulded on a laboratory scale. The manufacturing process was up-scaled using water-assisted mixing in a twin-screw extruder (TSE) followed by a second compounding step and injection moulding (IM). The composites were successfully produced using conventional melt-processing techniques but these did not show the same improvement in mechanical performance, probably due to the formation of CNC aggregates. There were indications of network formation when CNC was added, especially in the case of surface-modified CNC. Cellulose fibres and thermomechanical pulp were used as reinforcement in similar types of polymer matrices and the mixtures were similarly processed by TSE and IM. These materials were characterized with regard to appearance and durability. The discoloration of the composites due to excessive heat during processing did not significantly affect their mechanical properties, and the addition of the cellulose-based reinforcement to the polymer did not reduce its resistance to thermo-oxidative degradation compared to that of the pure matrix. In fact, the resistance to degradation was increased when lignin was present in the reinforcing element, showing a synergistic effect together with the added anti-oxidant. Superior properties were expected for the CNC composites compared to those of the larger cellulose fibre reinforcements, but in continuous production the stiffening effects were similar regardless of reinforcement type. These results confirm that the processing method and properties strongly affect the final properties of the composite.
  •  
8.
  • Muneer, Faraz, et al. (författare)
  • Preparation, Properties, Protein Cross-Linking and Biodegradability of Plasticizer-Solvent Free Hemp Fibre Reinforced Wheat Gluten, Glutenin, and Gliadin Composites
  • 2014
  • Ingår i: BioResources. - : BioResources. - 1930-2126. ; 9:3, s. 5246-5261
  • Tidskriftsartikel (refereegranskat)abstract
    • The present study is aimed at evaluating the use of plant-based polymers and fibres for the production of sustainable biocomposites. For the first time, plasticiser/solvent-free hemp fibre-reinforced wheat gluten and hemp-gliadin and glutenin composites were obtained by compression moulding at different temperatures. The plasticiser/solvent-free sample preparation method developed in this study facilitated the use of a powdered protein matrix with a mat of randomly oriented hemp fibres. The tensile and protein cross-linking properties, as well as the biodegradability, were investigated. The addition of hemp fibre to the protein matrix increased the E-modulus by 20 to 60% at 130 degrees C. An increase in moulding temperature from 110 to 130 degrees C resulted in an increase in maximum stress due to the formation of intermolecular bonds between protein chains. The gliadin composites had higher E-modulus and maximum stress and showed a larger increase in protein polymerisation with increased temperature compared to the gluten in composites. A comparison of tensile properties revealed that the composites were stiffer and stronger compared to several similarly produced biobased composites. The composites were found to be fully biodegradable under a simulated soil environment after 180 days. Biocomposites produced in the present study were found to be environmentally friendly with fairly good mechanical properties.
  •  
9.
  • Hosseini, Seyedehsan, 1994 (författare)
  • Additive-Driven Improvements in Interfacial Properties and Processing of TMP-Polymer Composites
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Efforts to address environmental concerns have resulted in new regulations designed to plan the reduction of plastic and synthetic polymer usage, necessitating the search for sustainable natural alternatives with comparable cost-effectiveness and mechanical performance. Thermomechanical pulp (TMP) fibres are one of the most affordable natural fibres that have no chemical refining in production, production have a high yield of 90-98% and TMP fibres have been demonstrated to improve the mechanical characteristics (strength, stiffness and toughness) of wood-polymer composites (WPCs) compared to the pure polymer. The integration of TMP fibres with non-polar synthetic polymers remains a challenge due to surface polarity differences. This PhD thesis aims to ease the processing of TMP fibre composites through the incorporation of additives. The hypothesis posits that incorporating magnesium stearate (MgSt), molybdenum disulfide (MoS2) and alkyl ketene dimer (AKD) as additives in TMP composites will enhance interfacial properties, resulting in improved processability and flow behaviour at high temperatures. MoS2 is known for its interaction with lignin, which exists in TMP and MgSt is recognised for its ability to improve flow in pharmaceutical processing when combined with cellulose, also a component of TMP. AKD modifies the hydrophilic properties of lignocellulosic surfaces. The experimental work explores the effect of these additives on the properties of TMP composites of ethylene acrylic acid copolymer (EAA) and polypropylene (PP) matrices. The dynamic mechanical analysis (DMA) and mechanical analysis results reveal that MoS2 exhibits superior interaction with TMP fibres, yielding enhanced interfacial properties compared to MgSt in between EAA and TMP fibres. Rheological studies elucidate the transition from a fluid-like state to a network-like structure upon the incorporation of TMP into the PP matrix. The incorporation of AKD with C18 reduces the viscosity of TMP-PP composites and PP itself, and, as determined through theoretical Hansen solubility parameter (HSP) calculations, increases compatibility between cellulose in TMP fibres and PP. The addition of AKD influences both the colour (lighter) and shape (smoother surface) of the extrudate filaments in the TMP-PP composites, indicative of improved processing. In addition, frictional analysis demonstrates the reduction of the coefficient of friction (COF) between metal and TMP fibre by MgSt and AKD treatments.
  •  
10.
  • Liu, Jun, et al. (författare)
  • Investigation of using limestone calcined clay cement (LC3) in engineered cementitious composites: The effect of propylene fibers and the curing system
  • 2021
  • Ingår i: Journal of Materials Research and Technology. - : Elsevier BV. - 2238-7854. ; 15, s. 2117-2144
  • Tidskriftsartikel (refereegranskat)abstract
    • Limestone calcined clay cement (LC3) is a new type of low-carbon cement that can reduce energy consumption and carbon dioxide emissions while meeting the performance requirements of ordinary cement. In this study, polypropylene (PP) fibers were mixed into limestone calcined clay cement-based materials to make new low-carbon ECCs. In this study, a total of 24 sets of specimens were designed for 4 groups of curing ages and 6 types of mix ratios. The compressive load–displacement data were measured the compressive curve characteristics were analyzed then, a compressive constitutive model of the composites was deduced and obtained. Through XRD, SEM-EDS and MIP experiments, the reasons and laws of the compressive strength ranges of adding PP fibers and LC3 to engineered cementitious composites (LC3-PP-ECCs) are further explained from the perspective of the pore size, microstructures and hydration products. The results show that, after 28 days, the compressive strength values of LC3-PP-ECCs generally decreases with increasing PP fiber content and the combined effect of PP fibers and hydration products causes the compressive strength of LC3-ECCs with 0.5% PP fibers to drop sharply. In addition, the specimens showed better properties in terms of toughness, ductility and energy absorption. However, in the microstructures, the addition of PP fibers will cause more internal defects and flaws. This results of this study can provide some theoretical experience and technical support for the engineering application of LC3-ECCs.
  •  
11.
  • Zhang, Y., et al. (författare)
  • MDS study on tensile properties of defective graphene sheet
  • 2021
  • Ingår i: 2021 23rd European Microelectronics and Packaging Conference and Exhibition, EMPC 2021.
  • Konferensbidrag (refereegranskat)abstract
    • Low-dimensional materials such as graphene exhibit superior electrical, mechanical and thermal properties. However, structural defects occur during the growth or treatment process of carbon nanomaterial and greatly affect the material properties. In this paper, molecular dynamics simulation methods are used to study the effects of atomic defects in graphene sheets on the tensile strength, and the vacancy type and defect orientation are considered in the cases of graphene sheets under various mechanical loadings. The simulation results show that for the graphene sheets with structural defects, the fracture starts near the original vacancy position. The tensile strength of the graphene sheets with X1-type vacancy defects under zigzag direction is reduced by about 26.9% compared with that of the defect-free graphene sheet, while the graphene sheet with X2-type vacancy defects shows the least decrease in magnitude, which is 9.5% lower than that of the perfect graphene sheet. When stretched in the armchair direction, the tensile strength of the graphene sheet with H2 vacancy defects was greatly reduced by 27.1%, and the X1 vacancy defects shows the least influence, where tensile strength of the graphene sheets was reduced by 11.2%.
  •  
12.
  •  
13.
  • Almgren, Karin M., et al. (författare)
  • Characterization of interfacial stress transfer ability by dynamic mechanical analysis of cellulose fiber based composite materials
  • 2010
  • Ingår i: Composite interfaces (Print). - 0927-6440 .- 1568-5543. ; 17:9, s. 845-861
  • Tidskriftsartikel (refereegranskat)abstract
    • The stress transfer ability at the fiber-matrix interface of wood fiber composites is known to affect the mechanical properties of the composite. The evaluation of interface properties at the level of individual fibers is however difficult due to the small dimensions and variability of the fibers. The dynamical mechanical properties of composite and constituents, in this case wood fibers and polylactide matrix, was here used together with micromechanical modeling to quantify the stress transfer efficiency at the fiber-matrix interface. To illustrate the methodology, a parameter quantifying the degree of imperfection at the interface was identified by inverse modeling using a micromechanical viscoelastic general self-consistent model with an imperfect interface together with laminate analogy on the composite level. The effect of moisture was assessed by comparison with experimental data from dynamic mechanical analysis in dry and moist state. For the wood fiber reinforced polylactide, the model shows that moisture absorption led to softening and mechanical dissipation in the hydrophilic wood fibers and biothermoplastic matrix, rather than loss of interfacial stress transfer ability.
  •  
14.
  • Guo, Zengwei, et al. (författare)
  • Preparation of polypropylene/nanoclay composite fibers
  • 2013
  • Ingår i: Polymer Engineering and Science. - : Wiley. - 0032-3888 .- 1548-2634. ; 53:10, s. 2035-2044
  • Tidskriftsartikel (refereegranskat)abstract
    • Melt spinning of nanoclay (NA)/polypropylene (PP) composites into textile fibers is studied. The synthetic NA Perkalite F100 is prone to be exfoliated in PP matrix. With the help of a maleic anhydride-grafted low-molecular-weight PP as compatibilizer (Epolene E43), a highly exfoliated PP/NA composite was successfully prepared. However, the prepared PP/NA composite shows a poor spinnability because of the phase separation between Epolene E43 and PP matrix. The combination of two different groups of compatibilizers, which are Polybond 1001 (acrylic acid-grafted PP) for the dispersion of NA and Epolene G3216 (maleic anhydride-grafted PP-based copolymer) for the exfoliation of NA, can solve this problem. The PP/NA composite prepared by these two compatibilizers can be smoothly spun into fiber at the NA concentration below 1.9 wt%, which is found to be the percolation concentration of formation of NA network structure in PP matrix.
  •  
15.
  •  
16.
  • Lobov, Gleb, et al. (författare)
  • Dynamic manipulation of optical anisotropy of suspended Poly-3-hexylthiophene nanofibers
  • 2016
  • Ingår i: Advanced Optical Materials. - : Wiley. - 2162-7568 .- 2195-1071. ; 4:10, s. 1651-1656
  • Tidskriftsartikel (refereegranskat)abstract
    • Poly-3-hexylthiophene (P3HT) nanofibers are 1D crystalline semiconducting nanostructures, which are known for their application in photovoltaics. Due to the internal arrangement, P3HT nanofibers possess optical anisotropy, which can be enhanced on a macroscale if nanofibers are aligned. Alternating electric field, applied to a solution with dispersed nanofibers, causes their alignment and serves as a method to produce solid layers with ordered nanofibers. The transmission ellipsometry measurements demonstrate the dichroic absorption and birefringence of ordered nanofibers in a wide spectral range of 400–1700 nm. Moreover, the length of nanofibers has a crucial impact on their degree of alignment. Using electric birefringence technique, it is shown that external electric field applied to the solution with P3HT nanofibers can cause direct birefringence modulation. Dynamic alignment of dispersed nanofibers changes the refractive index of the solution and, therefore, the polarization of transmitted light. A reversible reorientation of nanofibers is organized by using a quadrupole configuration of poling electrodes. With further development, the described method can be used in the area of active optical fiber components, lab-on-chip or sensors. It also reveals the potential of 1D conducting polymeric structures as objects whose highly anisotropic properties can be implemented in electro-optical applications.​.
  •  
17.
  • Lund, Anja, et al. (författare)
  • Piezoelectric polymeric bicomponent fibers produced by melt spinning
  • 2012
  • Ingår i: Journal of Applied Polymer Science. - : Wiley Periodicals, Inc.. - 0021-8995 .- 1097-4628. ; 126:2, s. 490-500
  • Tidskriftsartikel (refereegranskat)abstract
    • Melt spinning of a novel piezoelectric bicomponent fiber, with poly(vinylidene fluoride) as the electroactive sheath component, has been demonstrated. An electrically conductive compound of carbon black (CB) and high density polyethylene was used as core material, working as an inner electrode. A force sensor consisting of a number of fibers embedded in a soft CB/polyolefin elastomer matrix was manufactured for characterization. The fibers showed a clear piezoelectric effect, with a voltage output (peak-to-peak) of up to 40 mV under lateral compression. This continuous all-polymer piezoelectric fiber introduces new possibilities toward minimal single fiber sensors as well as large area sensors produced in standard industrial weaving machines.
  •  
18.
  • Nilsson, Erik, 1976, et al. (författare)
  • Poling and characterization of piezoelectric polymer fibers for use in textile sensors
  • 2013
  • Ingår i: Sensors and Actuators A-Physical. - : Elsevier S.A.. - 0924-4247 .- 1873-3069. ; 201, s. 477-486
  • Tidskriftsartikel (refereegranskat)abstract
    • This study reports on the poling and characteristics of a melt-spun piezoelectric bicomponent fiber with poly(vinylidene fluoride) (PVDF) as its sheath component and a conductive composite with carbon black (CB) and high density polyethylene (HDPE) as its core component. The influence of poling conditions on the piezoelectric properties of the fibers has been investigated. The poling parameters temperature, time and poling voltage have been varied and the piezoelectric effect of both contact- and corona-poled yarns have been evaluated. The results show that a high piezoelectric effect is achieved when the poling voltage is high as possible and the poling temperature is between 60°C and 120°C. It was also shown that permanent polarization is achieved in a time as short as 2 second in corona-poled fibers. A yarn exposed to a sinusoidal axial tension of 0.07% strain (the corresponding force amplitude was 0.05 N) shows an intrinsic voltage output of 4 V. The mean power from a 25 mm length of yarn is estimated to be 15nW. To demonstrate the fibers sensor properties, they are woven into a textile fabric from which a force sensor is manufactured and used to detect the heartbeat of a human.
  •  
19.
  • Oko, Asaf, et al. (författare)
  • Measurements and dimensional scaling of spontaneous imbibition of inkjet droplets on paper
  • 2016
  • Ingår i: Nordic Pulp & Paper Research Journal. - : SPCI. - 0283-2631 .- 2000-0669. ; 31:1, s. 156-169
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate theoretically and experimentally the spontaneous imbibition of water based inkjet formulations utilizing paper capillary rise and imbibition of inkjet drops. We approximate the paper structure to a two dimensional anisotropic porous material, and using Darcy's law as a base, we derive dimensionless groups that scale drop imbibition. This derivation is based on a previous dimensional scaling of drop imbibition on thick isotropic porous material. We apply this scaling to a paper substrate by measuring the average drop imbibition rate, and perform paper capillary rise experiments to obtain the average system parameters required for the scaling. The results suggest that this approach is a valuable tool to predict drop imbibition rates on paper. We then continue and perform the same sets of experiments on a different paper with similar structure that is surface treated (surface sized) with CaCl2 salt, an additive that is known to improve print quality. We find that due to rapid aggregation of the colorant ink by the CaCl2, the imbibition rate is slowed down in the capillary rise experiments, i.e., on much larger scales compared to a single inkjet drop. However, the presence of CaCl2 has only minor effect over the average imbibition rates of single drops. Imbibition rates on the CaCl2 surface sized paper did not give adequate scaling as a result of the fact that the aggregation was not included the theoretical assumptions behind the scaling.
  •  
20.
  •  
21.
  • Townsend, Philip, 1991, et al. (författare)
  • Stochastic modelling of 3D fiber structures imaged with X-ray microtomography
  • 2021
  • Ingår i: Computational materials science. - : Elsevier B.V.. - 0927-0256 .- 1879-0801. ; 194
  • Tidskriftsartikel (refereegranskat)abstract
    • Many products incorporate into their design fibrous material with particular levels of permeability as a way to control the retention and flow of liquid. The production and experimental testing of these materials can be expensive and time consuming, particularly if it needs to be optimised to a desired level of absorbency. We consider a parametric virtual fiber model as a replacement for the real material to facilitate studying the relationship between structure and properties in a cheaper and more convenient manner. 3D image data sets of a sample fibrous material are obtained using X-ray microtomography and the individual fibers isolated. The segmented fibers are used to estimate the parameters of a 3D stochastic model for generating softcore virtual fiber structures. We use several spatial measures to show the consistency between the real and virtual structures, and demonstrate with lattice Boltzmann simulations that our virtual structure has good agreement with respect to the permeability of the physical material. © 2021 The Author(s)
  •  
22.
  • Hosseini, Seyedehsan, 1994, et al. (författare)
  • Alkyl ketene dimer modification of thermomechanical pulp promotes processability with polypropylene
  • 2024
  • Ingår i: Polymer Composites. - 1548-0569 .- 0272-8397. ; 45:1, s. 825-835
  • Tidskriftsartikel (refereegranskat)abstract
    • Alkyl ketene dimers (AKDs) are known to efficiently react with cellulose with a dual polarity in their structure: a polar component and a nonpolar component. AKD of three different carbon chain lengths, 4, 10, and 16 carbons have been synthesized, and thermomechanical pulp (TMP) fibers were modified by them. The modification of TMP fibers with AKD resulted in an increased water contact angle, showing the presence of the AKDs on the TMP fibers and a new carbonyl peak in the IR spectra, suggesting modification of the TMP fibers with AKD groups. Calculating the Hansen solubility parameters of AKD and AKD conjugated to TMP in polypropylene (PP) indicates improved compatibility, especially of longer chain AKD and TMP AKD. The rheological studies of the composites showed that the AKD with the longest carbon chain decreases the melt viscosity of the PP-TMP-AKD composite, which combined with the shape and the color of the extruded composite filaments indicates improved flow properties and reduced stress build up during processing. The research findings demonstrate the ability of AKD to enhance the dispersibility and compatibility of natural fibers with PP.
  •  
23.
  • Qin, Xiao, 1993, et al. (författare)
  • Recrystallization and texture evolution of warm-pilgered FeCrAl alloy tube during annealing at 850°C
  • 2022
  • Ingår i: Journal of Nuclear Materials. - : Elsevier BV. - 0022-3115. ; 562
  • Tidskriftsartikel (refereegranskat)abstract
    • Recrystallization annealing of warm-pilgered FeCrAl tubes was the key to reduce the cracking and control the microstructure and properties of the cladding tube. The recrystallization and texture evolution of warm-pilgered FeCrAl tubes were investigated. The recrystallization kinetics and textural evolution during annealing were characterized using microhardness measurements and electron backscatter diffraction. The 3D-microstructure of the warm-pilgered FeCrAl tube exhibited heterogeneous deformed grains of α-fiber and γ-fiber orientation. The significant anisotropy results in different recrystallization kinetics in the axial and circumferential directions of the tube. The mirostructure maintains a stable grain size of ∼22 µm and an aspect ratio of 1.8 in the axial and circumferential directions within 0–600 min annealing time. The stable microstructure is due to the dispersion of fine Laves phase particles in the ferrite matrix. Quantitative texture analysis shows that the α-fiber texture decreased significantly and the γ-fiber increased after recrystallization. During the annealing process, the α-fiber strong point texture component {112}<110> turns into {223}<110> and the γ-fiber component {111}<110> turns into {111}<112>. The recrystallization and texture evolution of warm-pilgered FeCrAl tube is of great significance to preparation and microstructure control of final cladding tube.
  •  
24.
  • Skagestad, Ragnhild, 1978, et al. (författare)
  • GCCSI Webinar: Cutting Cost of CO2 Capture in Process Industry (CO2stCap) Project overview & first results for partial CO2 capture at integrated steelworks
  • 2017
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • GCCSI Webinar: Cutting Cost of CO2 Capture in Process Industry (CO2stCap) Project overview & first results for partial CO2 capture at integrated steelworks This publication has the format of a webinar: The CO2StCap project is a four year initiative carried out by industry and academic partners with the aim of reducing capture costs from CO2 intensive industries (more information here). The project, led by Tel-Tek, is based on the idea that cost reduction is possible by capturing only a share of the CO2 emissions from a given facility, instead of striving for maximized capture rates. This can be done in multiple ways, for instance by capturing only from the largest CO2 sources at individual multi-stack sites utilising cheap waste heat or adapting the capture volumes to seasonal changes in operations. The main focus of this research is to perform techno-economic analyses for multiple partial CO2 capture concepts in order to identify economic optimums between cost and volumes captured. In total for four different case studies are developed for cement, iron & steel, pulp & paper and ferroalloys industries. The first part of the webinar gave an overview of the project with insights into the cost estimation method used. The second part presented the iron & steel industry case study based on the Lulea site in Sweden, for which waste-heat mapping methodology has been used to assess the potential for partial capture via MEA-absorption. Capture costs for different CO2 sources were discussed, demonstrating the viability of partial capture in an integrated steelworks.
  •  
25.
  • Afshar, Reza, et al. (författare)
  • Creep in oak material from the Vasa ship: : verification of linear viscoelasticity and identification of stress thresholds
  • 2020
  • Ingår i: European Journal of Wood and Wood Products. - : Springer Nature. - 0018-3768 .- 1436-736X. ; 78:6, s. 1095-1103
  • Tidskriftsartikel (refereegranskat)abstract
    • Creep deformation is a general problem for large wooden structures, and in particular for shipwrecks in museums. In this study, experimental creep data on the wooden cubic samples from the Vasa ship have been analysed to confrm the linearity of the viscoelastic response in the directions where creep was detectable (T and R directions). Isochronous stress–strain curves were derived for relevant uniaxial compressive stresses within reasonable time spans. These curves and the associated creep compliance values justify that it is reasonable to assume a linear viscoelastic behaviour within the tested ranges, given the high degree of general variability. Furthermore, the creep curves were ftted with a one-dimensional standard linear solid model, and although the rheological parameters show a fair amount of scatter, they are candidates as input parameters in a numerical model to predict creep deformations. The isochronous stress–strain relationships were used to defne a creep threshold stress below which only negligible creep is expected. These thresholds ranges were 0.3–0.5 MPa in the R direction and 0.05–0.2 MPa in the T direction.
  •  
26.
  • Bado, Mattia Francesco, et al. (författare)
  • Characterization of concrete shrinkage induced strains in internally-restrained RC structures by distributed optical fiber sensing
  • 2021
  • Ingår i: Cement and Concrete Composites. - : Elsevier BV. - 0958-9465. ; 120
  • Tidskriftsartikel (refereegranskat)abstract
    • The present paper reports the result of an inter-university experimental investigation on concrete shrinkage induced strains on embedded rebars instrumented with Distributed Optical Fiber Sensors (DOFS). The monitoring was performed for a standard 28 days drying time and for a shorter 6 days time span (reflecting realistic constructions schedules accelerations to meet set deadlines). The tested specimens were Reinforced Concrete (RC) tensile members differing in their geometry, DOFS employed and fiber/rebar bonding techniques. Regarding the latter, a combination of cyanoacrylate (for gluing) and silicone (protection) was found to be the optimal one for deployments inside RC structures. The DOFS-reported combined effect of concrete shrinkage and creep on the embedded rebars is compared with the Model Code 2010's predictions and employed to extract conclusions on the residual performance of the RC members at the end of their drying phase.
  •  
27.
  • Bergström, Per, 1979, et al. (författare)
  • Uniaxial compression of fibre networks – the synergetic effect of adhesion and elastoplasticity on non-reversible deformation
  • 2022
  • Ingår i: Powder Technology. - : Elsevier BV. - 1873-328X .- 0032-5910. ; 395, s. 301-313
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper we study numerically and experimentally non-reversible deformation of anisotropic, semi-flexible fibre networks. We formulate a Discrete Element Model (DEM) with bonded particles to simulate uniaxial compression of such networks and use this model to describe and quantify the effect of elasto-plastic fibre contacts and fibre-fibre adhesion on non-reversible deformation. Our results show that inter-fibre adhesion plays a role for compression in a low solid volume fraction range where adhesive forces can overcome fibre deformation forces and moments. Also, elasto-plastic contacts between fibres become important at higher solid volume fractions when the yield criterion is exceeded. The combined case of fibres having elasto-plastic contacts and adhesion shows a significant synergetic effect leading to a degree of non-reversible deformation of the network far beyond that of networks with only elasto-plastic fibre contacts or inter-fibre adhesion.
  •  
28.
  • Goto, Yutaka, 1984, et al. (författare)
  • Economic, ecological and thermo-hygric optimization of a vapor-open envelope for subtropical climates
  • 2012
  • Ingår i: Energy and Buildings. - : Elsevier BV. - 0378-7788. ; 55:December 2012, s. 799-809
  • Tidskriftsartikel (refereegranskat)abstract
    • With regard to resource depletion and global climate change, it is becoming important to take holistic measures comprising ecological, economic and social aspects of the construction industry. An optimization method that deals with the trade-off among those pillars is needed to approach the overall life span of constructions from a holistic viewpoint. In this study, the insulation thickness of a vapor-open envelope system for subtropical regions with social advantages was investigated by an economic and ecological optimization model, taking into account both initial and running costs under the conditions of 8 cities in Japan. The thermo-hygric minimum thickness was also determined in order to ensure the longevity of the buildings. The following main findings were made: (1) the ecological optimal thickness was larger than the economic optimal thickness, (2) the thermo-hygric minimum was within the economic optimal range in most of the cases, and (3) the interest rate of the currency and the electricity price increase have a significant influence on the result of the optimization analysis. With the aid of the optimization model, it was shown that application of the envelope system is feasible in Japan, especially in the central and southern regions.
  •  
29.
  • Jebrane, Mohamed, et al. (författare)
  • Dimensional stability and mechanical properties of exoxidized vegetable oils as wood preservatives
  • 2016
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • In recent years, some vegetable oils such as linseed oil and soybean oil, have been used to preserve wood material, and contain no environmentally hazardous chemicals or chemicals harmful to humans. However, based on early studies related to vegetable oils, it was found that vegetable oils do not chemically bond with the wood structure, but rather only fill the cavities in the wood structure. This acts only to prevent the water uptake into wood. Because vegetable oils only act as a barrier to prevent water absorption, higher oil retentions (400 kg/m3 - 600 kg/m3) which are not cost-effective, would be needed to be effective in protecting wood. In this study, to reactivate oil and improve the bonding ability between oil and wood components, epoxidation of vegetable oil was targeted. Thus, more cost-effective oil retention levels between 80 kg/m3 and 270 kg/m3 were used due to treat the wood. With epoxidized vegetable oils, oil acids are able to bond to sites normally occupied by water molecules. This study also aimed to reduce leaching of boron compounds.
  •  
30.
  • Kádár, Roland, 1982, et al. (författare)
  • Cellulose Nanocrystal Liquid Crystal Phases: Progress and Challenges in Characterization Using Rheology Coupled to Optics, Scattering, and Spectroscopy
  • 2021
  • Ingår i: ACS Nano. - : American Chemical Society (ACS). - 1936-086X .- 1936-0851. ; 15:5, s. 7931-7945
  • Forskningsöversikt (refereegranskat)abstract
    • Cellulose nanocrystals (CNCs) self-assemble and can be flow-assembled to liquid crystalline orders in a water suspension. The orders range from nano- to macroscale with the contributions of individual crystals, their micron clusters, and macroscopic assemblies. The resulting hierarchies are optically active materials that exhibit iridescence, reflectance, and light transmission. Although these assemblies have the potential for future renewable materials, details about structures on different hierarchical levels that span from the nano- to the macroscale are still not unraveled. Rheological characterization is essential for investigating flow properties; however, bulk material properties make it difficult to capture the various length-scales during assembly of the suspensions, for example, in simple shear flow. Rheometry is combined with other characterization methods to allow direct analysis of the structure development in the individual hierarchical levels. While optical techniques, scattering, and spectroscopy are often used to complement rheological observations, coupling them in situ to allow simultaneous observation is paramount to fully understand the details of CNC assembly from liquid to solid. This Review provides an overview of achievements in the coupled analytics, as well as our current opinion about opportunities to unravel the structural distinctiveness of cellulose nanomaterials.
  •  
31.
  •  
32.
  • Karna, Nabin Kumar, 1984, et al. (författare)
  • Electroassisted Filtration of Microfibrillated Cellulose: Insights Gained from Experimental and Simulation Studies
  • 2021
  • Ingår i: Industrial & Engineering Chemistry Research. - : American Chemical Society (ACS). - 1520-5045 .- 0888-5885. ; 60:48, s. 17663-17676
  • Tidskriftsartikel (refereegranskat)abstract
    • An electroassisted filtration technique has been employed to improve dewatering of a suspension of microfibrillated cellulose (MFC) produced via 2,2,6,6-tetramethylpiperidinyl-1-oxyl (TEMPO)-mediated oxidation. In addition, all-atom molecular dynamic (MD) simulations were performed to deepen the understanding of the complicated dewatering mechanism on a molecular level. Both the experimental and the simulation results implied that the dewatering rate was not only improved when electroassisted filtration was used but also found to be proportional to the strength of the electric field. A channeled dewatered structure was observed for these experiments and may have contributed to enhanced dewatering by providing high overall permeability. The MD simulations revealed that the electric field had a significant impact on the fibril movement, whereas the impact of pressure was limited. The simulations also suggested that the increased filtrate flow upon the application of an electric field was not only due to electroosmotic flow but also due to electrophoretic movement of the fibrils toward the anode that led to the release of water that had been trapped between the fibrils, allowing it to be pressed out together with the rest of the bulk water. This study shows that electroassisted filtration has the potential to improve the dewatering of TEMPO-MFC, and the MD simulations provide further insights into the dewatering mechanism.
  •  
33.
  • Larsson, Sylvia, et al. (författare)
  • Effects of moisture content, torrefaction temperature, and die temperature in pilot scale pelletizing of torrefied Norway spruce
  • 2013
  • Ingår i: Applied Energy. - : Elsevier BV. - 0306-2619 .- 1872-9118. ; 102, s. 827-832
  • Tidskriftsartikel (refereegranskat)abstract
    • Pilot scale pelletizing of torrefied Norway spruce was performed in a factorial design with controlled factors at two levels: material moisture content (11% and 15%) and torrefaction temperature (270 and 300 °C), and die temperature as an uncontrolled factor (60–105 °C). Compared to commercial wood pellets, produced pellets had comparable bulk densities (630–710 kg/m3) but lower pellet durability (80–90%). Energy consumption for pelletizing of torrefied materials was approximately 100% higher than for softwood pelletizing, despite using a much shorter die channel length (35 vs. 55 mm:s), and the amounts of fines were high (10–30%). Die temperature showed a strong positive correlation with pellet production rate. Material moisture content had little influence on pellet quality and production rate, but addition of water created handling problems due to bad flow behavior.
  •  
34.
  • Lidén, Anna, 1994, et al. (författare)
  • Dewatering microcrystalline cellulose : The influence of ionic strength
  • 2021
  • Ingår i: Separation and Purification Technology. - : Elsevier BV. - 1383-5866 .- 1873-3794. ; 264
  • Tidskriftsartikel (refereegranskat)abstract
    • This study investigates the influence of the ionic strength on the dead-end filtration of microcrystalline cellulose (MCC) suspensions in the range of 0.1–1 g/L NaCl, in altering the electrostatic interactions between particles. The formation of larger agglomerates of increasing ionic concentration was observed using Focused Beam Reflectance Measurement (FBRM®). Local filtration properties were investigated as the experimental set-up allowed for measurements of local hydrostatic pressure and solidosity to be made. The results show that the addition of ions decreases both the average and local filtration resistance. The formation of a resistant skin layer was observed for the suspension without the addition of NaCl but was counteracted when ions were added. Furthermore, the ionic strength did not seem to have any notable effect on the structure of the cake in the range 0.15–1.0 g/L NaCl. However, the pressure dependency of the solidosity at lower ionic concentration was higher. The local filtration properties were fitted to semi-empirical relations, which indicated the formation of moderately to highly compressible cakes when NaCl was added.
  •  
35.
  • Liu, Jun, et al. (författare)
  • Alkali-activated binders based on incinerator bottom ash combined with limestone-calcined clay or fly ash
  • 2022
  • Ingår i: Construction and Building Materials. - : Elsevier BV. - 0950-0618. ; 320
  • Tidskriftsartikel (refereegranskat)abstract
    • This study investigates the feasibility of improving the properties of alkali-activated bottom ash (AABA) binders by incorporating limestone-calcined clay (LC2) or fly ash (FA) with the aim of treating and utilising bottom ash in a large-scale as a potential resource for construction materials. Experimental results revealed that increasing the substitution with LC2 or FA in the AABA binders increased both the compressive strength and the immobilization capacity of heavy metal when compared to the pure AABA binders. Given a Na2O content of 5%, the compressive strength of the AABA binder with 30% bottom ash substituted by FA was almost 200% higher than that of the pure AABA binder. However, further increase in the Na2O dosage did not necessarily lead to higher compressive strength, which was found to be controlled by the volume fraction of air voids and large pores. When greater Na2O dosages were employed, i.e., 6 % and 7 %, LC2 was found to be more useful in improving the properties of AABA binders than FA. Furthermore, the substitution of bottom ash with FA resulted in the formation of N-A-S-H gels, whereas the substitution with LC2 led to the formation of more C-A-S-H gels. Finally, the immobilization capacity appeared to be influenced by many factors, such as hydration products, capillary pores and different types of heavy metals.
  •  
36.
  • Lundh, Torbjörn, 1965, et al. (författare)
  • A Compression Garment for Provision of an Adjustable Pressure
  • 2018
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • A compression garment for providing an adjustable pressure towards a body part is disclosed. The compression garment comprises a unitary single sheet of elastic material arranged to encircle the full circumference of a body part, such as a limb or the head. The sheet is folded or arranged to be folded in at least one predefined way, so that the folding forms one or more defined overlap(s) forming at least two overlaying layers of the sheet encircling the full circumference of a part of the body part. Hereby, the pressure profile of the garment can easily be adjusted by making use of the garment in different folded configurations. Markings may further be provided to provide guidance towards the predefined ways of folding.
  •  
37.
  • Mattsson, Tuve, 1979, et al. (författare)
  • The use of fluid dynamic gauging in investigating the thickness and cohesive strength of cake fouling layers formed during cross-flow microfiltration
  • 2018
  • Ingår i: Separation and Purification Technology. - : Elsevier BV. - 1873-3794 .- 1383-5866. ; 198, s. 25-30
  • Tidskriftsartikel (refereegranskat)abstract
    • A common challenge during membrane filtration is cake fouling, whereby the build-up of material on the membrane surface reduces the permeate flux. Such fouling layers can also alter the selectivity of the separation. In this study, fluid dynamic gauging (FDG) is used in situ to investigate the cake fouling formed during cross-flow filtration of a model material: softwood Kraft lignin. FDG was used to estimate (i) the thickness of the cake layers (in the gm scale) and (ii) the local cohesive strength at different depths in the cake layer. Fouling layers formed at different transmembrane pressure (TMP) values were investigated. The estimated thickness of the cake layers increased with increasing TMP. However, it was difficult to capture the full cake thickness for the more loosely formed cakes layers. An increase in the cohesive strength of the cake was found to occur with increasing TMP values. (C) 2017 Elsevier B.V. All rights reserved.
  •  
38.
  • Orzan, Eliott Jean Quentin, 1995 (författare)
  • Upgrading Cellulose Networks: Conquering Limitations in Fiber Foams
  • 2023
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The battle to create structural materials with low environmental impact demands the investiture of two champions: porous structures and cellulose substrates. The dominant solutions when constructing strong lightweight materials are plastic and metallic foams, while currently, cellulose fiber foams suffer from challenges which hamper their development. Cellulose foams are structurally promising, but are sensitive to humidity and fire, and often have an inferior mechanical performance compared to their plastic and metallic counterparts. In addition, standard foaming techniques for cellulose fiber foams use synthetic sodium dodecyl sulfate (SDS), a surfactant which weakens critical fiber-to-fiber contacts. In this work, two approaches were employed as solutions to strengthen cellulose foams: cross-linking of cellulose fibers, and controlling pore structure formation. Phytic acid (PA), a bio-based polyphosphate, was cross-linked to cellulose fibers with the goal of improving fiber-fiber bonding and generating flame-retardancy in SDS-based cellulose foams. Controlling pore structure formation was separately achieved by dispersing tert-butanol (TBA), a water miscible amphiphile, into cellulose-water suspensions. Addition of TBA induced the formation of hierarchical structures which vastly increased the surface area and mechanical performance of dried foams. The functionalities produced by the two presented solutions expand the potential applications for cellulose foams, and serve to encourage the development of these materials as lightweight competitors in the transportation, construction and packaging sectors.
  •  
39.
  • Rodionova, Galina, et al. (författare)
  • Mechanical and oxygen barrier properties of films prepared from fibrillated dispersions of TEMPO-oxidized Norway spruce and Eucalyptus pulps
  • 2012
  • Ingår i: Cellulose. - : Springer Science and Business Media LLC. - 0969-0239 .- 1572-882X. ; 19
  • Tidskriftsartikel (refereegranskat)abstract
    • TEMPO-oxidized cellulose nanofibers (TOCN) were obtained from commercial Norway spruce and mixed Eucalyptus cellulose pulps using TEMPO/sodium bromide (NaBr)/sodium hypochlorite (NaClO) system at pH 10 and 22 °C. After reaction, the fibrillated TEMPO-oxidized celluloses were used for preparation of self-standing films and casting of laminate films on 50 μm thick polyethylene terephthalate. Significant differences between N. spruce and Eucalyptus TOCN were registered. The tensile strength of the films showed a maximum value for spruce samples oxidized with addition of 10 mmol g -1 of NaClO. Oxygen permeability decreased with increasing oxidation levels, being lower for N. spruce TOCN compared to Eucalyptus.
  •  
40.
  • Theliander, Hans, 1956, et al. (författare)
  • Filtration in bio-refineries may imply challenges: Methodology to understand and overcome these challenges
  • 2015
  • Ingår i: NWBC 2015 - 6th Nordic Wood Biorefinery Conference. ; , s. 145-151
  • Konferensbidrag (refereegranskat)abstract
    • Today filtration is one of the most common unit operations in the process industry, but in tomorrows bio-refineries (in particular wood based) it will be even more central. However, the various solid organic materials (different forms of cellulose, hemicellulose or lignin based particles) have very different filtration properties and generally form compressible filter cakes. These materials may also contain charged functional groups that influence particle-particle and particle-filtration medium interactions. The filtration behavior of these types of materials is often difficult to predict. In this paper a methodology for measurement of relevant filtration properties for materials forming compressible filter cakes will be presented. The data obtained with this methodology may be used for scale-up and design of filters. Furthermore, filtration of different types of lignin and cellulose based materials and how some challenges can be overcome will be discussed.
  •  
41.
  • Wagner, Leopold, et al. (författare)
  • The influence of chemical degradation and polyethylene glycol on moisture-dependent cell wall properties of archeological wooden objects : a case study of the Vasa shipwreck
  • 2016
  • Ingår i: Wood Science and Technology. - : Springer Science and Business Media LLC. - 0043-7719 .- 1432-5225. ; 50:6, s. 1103-1123
  • Tidskriftsartikel (refereegranskat)abstract
    • Cell wall measures allow for direct assessment of wood modification without the adverse effect of varying density and microstructure. In this study, cell wall properties of recent and archeological oak wood from the Vasa shipwreck were investigated for cell wall stiffness, hardness and creep with respect to effects of chemical degradation, impregnation with a preservation agent, namely polyethylene glycol, and moisture. For this purpose, nanoindentation tests were performed at varying relative humidity, leading to different moisture contents in the wood samples. Concurrently, microstructural and chemical characterization of the mate- rial was conducted. Impregnated and untreated recent oak wood showed a softening effect of both moisture and preservation agent at the wood cell wall level. On the contrary, increased stiffness was found for non-impregnated Vasa oak, which can be explained by aging-related modifications in cell wall components. These effects were counteracted by the softening effect of polyethylene glycol in the impregnated Vasa material, where a lower overall stiffness was measured. The reverse effect of the preservation agent and moisture, namely increased indentation creep of the cell wall material, was revealed. The loss of acetyl groups in the hemicelluloses explained the decreased hygroscopicity of the Vasa oak. In the impregnated Vasa oak, this effect seemed to be partly counteracted by the presence of low-molecular polyethylene glycol contributing to higher hygroscopicity of the cell wall. Thus, the higher overall sorptive capacity of the impregnated Vasa material, with respect to the non-impregnated material, was detected, which has resulted in a sorptive behavior similar to that of recent oak wood. The proposed approach requires only small amounts of material, making it especially suitable for application to precious historical wooden artifacts. 
  •  
42.
  •  
43.
  • Wojno, Sylwia, 1990, et al. (författare)
  • Phase transitions of cellulose nanocrystal suspensions from nonlinear oscillatory shear
  • 2022
  • Ingår i: Cellulose. - : Springer Science and Business Media LLC. - 0969-0239 .- 1572-882X. ; 29:7, s. 3655-3673
  • Tidskriftsartikel (refereegranskat)abstract
    • Cellulose nanocrystals (CNCs) self- assemble in water suspensions into liquid crystalline assemblies. Here, we elucidate the microstructural changes associated with nonlinear deformations in (2–9 wt%) CNC suspensions through nonlinear rheological analysis, that was performed in paral- lel with coupled rheology—polarized light imaging. We show that nonlinear material parameters from Fourier-transform rheology and stress decomposition are sensitive to all CNC phases investigated, i.e. iso- tropic, biphasic and liquid crystalline. This is in con- trast to steady shear and linear viscoelastic dynamic moduli where the three-region behavior and weak strain overshoot cannot distinguish between biphasic and liquid crystalline phases. Thus, the inter-cycle and intra-cycle nonlinear parameters investigated are a more sensitive approach to relate rheological meas- urements to CNC phase behavior.
  •  
44.
  • Zhou, Mi, et al. (författare)
  • Effect of crossflow regime on the deposit and cohesive strength of membrane surface fouling layers
  • 2019
  • Ingår i: Food and Bioproducts Processing. - : Institution of Chemical Engineers. - 0960-3085 .- 1744-3571. ; 115, s. 185-193
  • Tidskriftsartikel (refereegranskat)abstract
    • Acquiring knowledge of the properties of membrane fouling layers is crucial to mitigating fouling and developing cleaning strategies. The cohesive strength of these fouling layers, which determines the cleaning requirement of the membrane, is nevertheless rarely investigated. Here we introduced fluid dynamic gauging (FDG)to the crossflow microfiltration of a wood material, namely microcrystalline cellulose (MCC, nominal particle size 20 μm, 95% (in volume)of the particles are bigger than 5.4 μm and smaller than 56.4 μm), to study in situ the cohesive strength of the membrane surface fouling formed under different crossflow regimes. Using regenerated cellulose membrane with a nominal pore size of 0.2 μm, filtration experiments with FDG measurement show that the crossflow regime can lead to the formation of surface fouling layers with distinct cohesive strength. Fouling formed in turbulent/transitional crossflow (Reynolds number, Re duct = 4170)was stronger and its removal required more liquid shear stress compared to the layers formed in laminar crossflow (Re duct = 1560). The fouling layers that can withstand the minimum shear of 35 Pa from the FDG sensor with turbulent/transitional crossflow were, on average 294 ± 10 μm thick, in contrast to those formed in laminar crossflow, which were significantly thinner (144 ± 73 μm at 35 Pa shear stress, p < 0.05). On the other hand, turbulent/transitional crossflow reduced material deposition significantly (p < 0.05). After 1000 s filtration, 0.117 ± 0.003 kg m −2 MCC were found on the turbulent/transitional crossflow membranes, compare to 0.134 ± 0.005 kg m −2 in the laminar crossflow situation. Moreover, a similar permeate flux was observed in all experiments. Therefore, this work also highlights the necessity of developing membrane cleaning protocols based on the fouling layer properties, rather than on the permeate flux decline.
  •  
45.
  • Zhou, Mi, 1985, et al. (författare)
  • Investigation of the cohesive strength of membrane fouling layers formed during cross-flow microfiltration: The effects of pH adjustment on the properties and fouling characteristics of microcrystalline cellulose
  • 2019
  • Ingår i: Chemical Engineering Research and Design. - : Elsevier BV. - 0263-8762 .- 1744-3563. ; 149, s. 52-64
  • Tidskriftsartikel (refereegranskat)abstract
    • Fluid dynamic gauging was used to investigate the cohesive strength of the membrane fouling layer formed during cross-flow microfiltration of microcrystalline cellulose. Fouling behaviour was compared at two pH levels (i.e. different surface charges of the particles and membranes) with two membranes (i.e. regenerated cellulose and polyethersulphone). It was found that a suspension at low pH, where the surface charge of the particles is close to zero, resulted in thicker and stronger surface fouling layers (668 ± 66 μm thick at a shear stress of 36 Pa for the regenerated cellulose membrane). The permeate flux was reduced by 62% during the first 1000 s. For close-to-neutral pH, where the particles are negatively charged, the fouling layers were thinner and less resistant to shear stress (290 ± 77 μm thick at a shear stress of 36 Pa) and the decline of the flux was faster: a 90% decrease was recorded during the initial 1000 s. The differences in flux decline behaviour suggest a more pronounced blocking of the pore openings for the membranes at the higher pH. Similar fouling behaviour was observed for the two membranes. An atomic force microscope equipped with a colloid probe was used to evaluate particle/particle and particle/membrane interactions.
  •  
46.
  • Östlund, Åsa, 1977, et al. (författare)
  • Modification of crystallinity and pore size distribution in coagulated cellulose films
  • 2013
  • Ingår i: Cellulose. - : Springer Science and Business Media LLC. - 0969-0239 .- 1572-882X. ; 20:4, s. 1657-1667
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study the effects of altering the coagulation medium during regeneration of cellulose dissolved in the ionic liquid 1-ethyl-3-methylimidazolium acetate, were investigated using solid-state NMR spectroscopy and NMR cryoporometry. In addition, the influence of drying procedure on the structure of regenerated cellulose was studied. Complete conversion of the starting material into regenerated cellulose was seen regardless of the choice of coagulation medium. Coagulation in water predominantly formed cellulose II, whereas coagulation in alcohols mainly generated non-crystalline structures. Subsequent drying of the regenerated cellulose films, induced hornification effects in the form of irreversible aggregation. This was indicated by solid-state NMR as an increase in signal intensity originating from crystalline structures accompanied by a decrease of signal intensity originating from cellulose surfaces. This phenomenon was observed for all used coagulants in this study, but to various degrees with regard to the polarity of the coagulant. From NMR cryoporometry, it was concluded that drying induced hornification generates an increase of nano-sized pores. A bimodal pore size distribution with pore radius maxima of a few nanometers was observed, and this pattern increased as a function of drying. Additionally, cyclic drying and rewetting generated a narrow monomodal pore size pattern. This study implies that the porosity and crystallinity of regenerated cellulose can be manipulated by the choice of drying condition.
  •  
47.
  • Aldaeus, Fredrik, et al. (författare)
  • The supramolecular structure of cellulose-rich wood pulps can be a determinative factor for enzymatic hydrolysability
  • 2015
  • Ingår i: Cellulose. - : Springer Science and Business Media LLC. - 0969-0239 .- 1572-882X. ; 22:6, s. 3991-4002
  • Tidskriftsartikel (refereegranskat)abstract
    • The enzymatic hydrolysability of three industrial pulps, five lab made pulps, and one microcrystalline cellulose powder was assessed using commercial cellulolytic enzymes. To gain insight into the factors that influence the hydrolysability, a thorough characterization of the samples was done, including their chemical properties (cellulose content, hemicellulose content, lignin content, and kappa number), their macromolecular properties (peak molar mass, number-average molar mass, weight-average molar mass, polydispersity, and limiting viscosity) and their supramolecular properties (fibre saturation point, specific surface area, average pore size, and crystallinity). The hydrolysability was assessed by determination of initial conversion rate and final conversion yield, with conversion yield defined as the amount of glucose in solution per unit of glucose in the substrate. Multivariate data analysis revealed that for the investigated samples the conversion of cellulose to glucose was mainly dependent on the supramolecular properties, such as specific surface area and average pore size. The molar mass distribution, the crystallinity, and the lignin content of the pulps had no significant effect on the hydrolysability of the investigated samples.
  •  
48.
  • Aulin, Christian, et al. (författare)
  • Design of highly oleophobic cellulose surfaces from structured silicon templates
  • 2009
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 1:11, s. 2443-2452
  • Tidskriftsartikel (refereegranskat)abstract
    • Structured silicon surfaces, possessing hierarchical porous characteristics consisting of micrometer-sized cavities superimposed upon a network of nanometer-sized pillars or wires, have been fabricated by a plasma-etching process. These surfaces have superoleophobic properties, after being coated with fluorinated organic trichlorosilanes, on intrinsically oleophilic surfaces. By comparison with flat silicon surfaces, which are oleophilic, it has been demonstrated that a combination of low surface energy and the structured features of the plasma-etched surface is essential to prevent oil from penetrating the surface cavities and thus induce the observed macroscopic superoleophobic phenomena with very low contact-angle hysteresis and low roll-off angles. The structured silicon surfaces were coated with cellulose nanocrystals using the polyelectrolyte multilayer technique. The cellulose surfaces prepared in this way were then coated with a monolayer of fluorinated trichlorosilanes. These porous cellulose films displayed highly nonwetting properties against a number of liquids with low surface tension, including alkanes such as hexadecane and decane. The wettability and chemical composition of the cellulose/silicon surfaces were characterized with contact-angle goniometry and X-ray photoelectron spectroscopy, respectively. The nano/microtexture features of the cellulose/silicon surfaces were also studied with field-emission scanning electron microscopy. The highly oleophobic structured cellulose surfaces are very interesting model surfaces for the development of biomimetic self-cleaning surfaces in a vast array of products, including green constructions, packaging materials, protection against environmental fouling, sports, and outdoor clothing, and microfluidic systems.
  •  
49.
  • Aulin, Christian, 1980-, et al. (författare)
  • Wetting kinetics of oil mixtures on fluorinated model cellulose surfaces
  • 2008
  • Ingår i: Journal of Colloid and Interface Science. - : Elsevier BV. - 0021-9797 .- 1095-7103. ; 317:2, s. 556-567
  • Tidskriftsartikel (refereegranskat)abstract
    • The wetting of two different model cellulose surfaces has been studied; a regenerated cellulose (RG) surface prepared by spin-coating, and a novel multilayer film of poly(ethyleneimine) and a carboxymethylated microfibrillated cellulose (MFC). The cellulose films were characterized in detail using atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). AFM indicates smooth and continuous films on a nanometer scale and the RMS roughness of the RG cellulose and MFC surfaces was determined to be 3 and 6 nm, respectively. The cellulose films were modified by coating with various amounts of an anionic fluorosurfactant, perfluorooctadecanoic acid, or covalently modified with pentadecafluorooctanyl chloride. The fluorinated cellulose films were used to follow the spreading mechanisms of three different oil mixtures. The viscosity and surface tension of the oils were found to be essential parameters governing the spreading kinetics on these surfaces. XPS and dispersive surface energy measurements were made on the cellulose films coated with perfluorooctadecanoic acid. A strong correlation was found between the surface concentration of fluorine, the dispersive surface energy and the contact angle of castor oil on the surface. A dispersive surface energy less than 18 mN/m was required in order for the cellulose surface to be non-wetting (Ξe > 90 °) by castor oil.
  •  
50.
  • Bandekar, R., et al. (författare)
  • Crossflow filtration of green liquor for increased pulp production, improved green liquor quality, and energy savings
  • 2020
  • Ingår i: TAPPI Journal. - : Technical Assoc. of the Pulp and Paper Industry Press. - 0734-1415. ; 19:10, s. 527-538
  • Tidskriftsartikel (refereegranskat)abstract
    • A new green liquor filtration system has been installed and commissioned at the Ence pulp mill in Pontevedra, Spain. The filtration system is based on microfiltration and was developed in collaboration with the KTH Royal Institute of Technology in Stockholm, Sweden. The patented method for efficient purification of green liquor decreases the non-process element (NPE) content by providing more efficient solids/liquid separation, reducing energy and chemical consumption in pulp mills and increasing production capacity by eliminating certain capacity bottlenecks. The process has been continuously tested at the Aspa Bruk Mill outside Askersund, Sweden, since 2013. The technology has proven to create nearly particulate-free green liquor during the purification process. The technology can also be used to polish white liquor to provide higher pulp quality. To provide for a simple and cost-effective installation, the system was designed as a skid-mounted unit that is pre-piped, instrumented, and tested before shipment. The system is modular and allows for easy expansion of capacity. This paper discusses the process design, process integration, and startup of the new system, along with experi-ences from the first months of operation. Application: The patented and trademarked CleanFlow system is a technology designed to increase the capacity of a kraft mill recausticizing plant. Crossflow ceramic membranes are used to filter a portion of the green liquor, debottlenecking the existing green liquor clarifiers’ filters. The liquor quality is improved by reducing the buildup of NPEs. CleanFlow can also be implemented to filter white liquor, either the entire stream for improved pulp quality or just a portion, such as with preparing oxidized white liquor for pulp delignification after cooking, or for scrubbing of bleaching system vents.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 2447
Typ av publikation
tidskriftsartikel (1340)
konferensbidrag (642)
doktorsavhandling (152)
annan publikation (103)
licentiatavhandling (79)
bokkapitel (40)
visa fler...
rapport (31)
patent (26)
forskningsöversikt (25)
samlingsverk (redaktörskap) (7)
bok (2)
visa färre...
Typ av innehåll
refereegranskat (1725)
övrigt vetenskapligt/konstnärligt (690)
populärvet., debatt m.m. (31)
Författare/redaktör
Wågberg, Lars (129)
Theliander, Hans, 19 ... (82)
Wågberg, Lars, 1956- (75)
Lindström, Tom (64)
Henriksson, Gunnar (52)
Ek, Monica (49)
visa fler...
Larsson, Per Tomas (48)
Brelid, Harald, 1960 (48)
Nygårds, Mikael (44)
Isaksson, Per (44)
Lindström, Mikael E. (42)
Salmen, Lennart (40)
Gellerstedt, Göran (38)
Kulachenko, Artem (38)
Chinga-Carrasco, Gar ... (37)
Sevastyanova, Olena (34)
Uesaka, Tetsu (33)
Vomhoff, Hannes (33)
Li, Jiebing (32)
Jacobs, Anna, Ph. D. (32)
Söderberg, Daniel (31)
Karlström, Anders, 1 ... (28)
Zhou, Qi (28)
Theliander, Hans (28)
Pettersson, Torbjörn (27)
Adamopoulos, Stergio ... (27)
Lindström, Mikael (27)
Lawoko, Martin (27)
Östlund, Sören, 1961 ... (25)
Larsson, Per A., 198 ... (25)
Engstrand, Per (24)
Westman, Gunnar, 196 ... (24)
Berntsson, Thore, 19 ... (24)
Engstrand, Per, Prof ... (23)
Aldaeus, Fredrik (23)
Östlund, Sören (23)
Pettersson, Gunilla (22)
Kulachenko, Artem, 1 ... (21)
Hasani, Merima, 1978 (20)
Dahlman, Olof (20)
Krochak, Paul (20)
Uesaka, Tetsu, 1950- (20)
Ferritsius, Rita (20)
Wågberg, Lars, Profe ... (19)
Sjöholm, Elisabeth, ... (19)
Tomani, Per (19)
Engstrand, Per, 1955 ... (18)
Erlandsson, Johan (18)
Köhnke, Tobias (18)
Danielsson, Sverker (18)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (1007)
RISE (693)
Chalmers tekniska högskola (468)
Mittuniversitetet (350)
Lunds universitet (74)
Karlstads universitet (73)
visa fler...
Sveriges Lantbruksuniversitet (71)
Linköpings universitet (57)
Umeå universitet (47)
Linnéuniversitetet (42)
Uppsala universitet (41)
Luleå tekniska universitet (35)
Högskolan i Borås (35)
Stockholms universitet (28)
Göteborgs universitet (18)
Högskolan Dalarna (15)
Högskolan i Gävle (14)
Mälardalens universitet (11)
Malmö universitet (6)
Högskolan i Skövde (6)
Karolinska Institutet (4)
Högskolan i Halmstad (3)
Örebro universitet (2)
IVL Svenska Miljöinstitutet (2)
Högskolan Väst (1)
Jönköping University (1)
Riksantikvarieämbetet (1)
visa färre...
Språk
Engelska (2426)
Svenska (15)
Tyska (2)
Nygrekiska (2)
Spanska (1)
Portugisiska (1)
Forskningsämne (UKÄ/SCB)
Teknik (2446)
Naturvetenskap (372)
Lantbruksvetenskap (84)
Medicin och hälsovetenskap (15)
Samhällsvetenskap (9)
Humaniora (5)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy