SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(NATURAL SCIENCES) hsv:(Chemical Sciences) hsv:(Inorganic Chemistry) "

Sökning: hsv:(NATURAL SCIENCES) hsv:(Chemical Sciences) hsv:(Inorganic Chemistry)

  • Resultat 1-50 av 5158
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Maurina Morais, Eduardo, 1989, et al. (författare)
  • Solvent-free synthesis of protic ionic liquids. Synthesis, characterization and computational studies of triazolium based ionic liquids
  • 2022
  • Ingår i: Journal of Molecular Liquids. - : Elsevier BV. - 0167-7322. ; 360
  • Tidskriftsartikel (refereegranskat)abstract
    • A series of triazolium and imidazolium based protic ionic liquids were synthesized using a solvent-free method designed to address several limitations encountered with other commonly used methods. Using this method, pure (98–99% m/m) and dry (128–553 ppm of water) protic ionic liquids were synthesized (in a laboratory scale) without the need for purification methods that require heating the ionic liquid, hence avoiding the common issue of thermal decomposition. This method was also designed to allow for the accurate measurement of acid and base, and for the controlled mixing of both compounds, which is essential to avoid producing impure protic ionic liquids with excess of either acid or base. The system is constructed of only glass and chemically resistant polymer (PTFE and PVDF) parts, which avoid other contaminants that can result from unwanted reactions involving the reagents with common laboratory tools (metallic objects, paper, plastic, etc.). This process is described in detail in the paper as well as in a video. The resulting ionic liquids were carefully analyzed by spectroscopic and thermal methods designed to avoid water absorption, which is known to affect their properties. To complement this experimental characterization, computational chemistry tools were used to assess the ionic liquids’ properties, as well as to assign vibrational modes.
  •  
3.
  • Sauer, Christopher, 1993 (författare)
  • Green Aromatics: Catalytic Valorisation of bio-derived 2,5-dimethylfuran over Zeolites and Zeotypes
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis discusses the use of biomass as a potentially green feedstock for the chemical industry in the urgent shift away from fossil resources. I elaborate on reasons why we cannot afford to burn virgin biomass for energy production, among them a variety of ecosystem services that forests and other lands provide. In addition, the utilisation of biomass should be focused on products that sequester and lock away carbon for more extended periods, e.g. timber, materials and chemicals. In particular, biomass can be used as an alternative "carbon neutral" feedstock for the chemical industry, where we can preserve the already existing chemical complexity in the bio-based molecules. One example is the upgrading of furans to benzene, toluene and xylene (BTX) aromatics with the help of zeolite catalysis. These aromatics are important commodity chemicals, where the shift to a bio-based resource could make use of already existing knowledge, catalyst and production infrastructure. However, research is necessary to understand these new feedstock molecules and their interaction with the catalysts and to enable the design of applicable catalysts. In order to study the interaction of the furans, in particular 2,5-dimethylfuran (2,5-dmf), I describe and discuss the development of an analytical methodology that utilises infrared spectroscopy and mass spectrometry for the on-line identification and quantification of product molecules during catalytic reactions. This on-line analysis method is then applied to the catalytic conversion of 2,5-dmf to aromatics over a range of zeolite and zeotype catalysts. In-depth studies with ammonia as a probe molecule of the catalytic active acid sites, as well as temperature programmed experiments with ammonia and 2,5-dmf give insights into product distribution, selectivity changes and deactivation of the catalyst. For example, olefins and aromatics are initially preferred products, while with increasing time on stream, the isomerisation of 2,5-dmf becomes dominant. The incorporation of Ga into the zeotype framework, resulting in a Ga-Silicate, shows how targeted catalyst design can increase overall aromatics production. This catalyst is also suitable for selective isomerisation of 2,5-dmf to 2,4-dimethylfuran, which has a rare substitution pattern. Finally, itwas found that the most valuable of BTX,  p -xylene, can be produced more selectively when 2,5-dmf is pre-adsorbed onto zeolite ZSM-5 and then released during a temperature programmed product desorption.
  •  
4.
  •  
5.
  • Guo, Y., et al. (författare)
  • Reversible Structural Isomerization of Nature's Water Oxidation Catalyst Prior to O-O Bond Formation
  • 2022
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 144:26, s. 11736-11747
  • Tidskriftsartikel (refereegranskat)abstract
    • Photosynthetic water oxidation is catalyzed by a manganese-calcium oxide cluster, which experiences five "S-states" during a light-driven reaction cycle. The unique "distorted chair"-like geometry of the Mn4CaO5(6)cluster shows structural flexibility that has been frequently proposed to involve "open" and "closed"-cubane forms from the S1 to S3states. The isomers are interconvertible in the S1 and S2states, while in the S3state, the open-cubane structure is observed to dominate inThermosynechococcus elongatus (cyanobacteria) samples. In this work, using density functional theory calculations, we go beyond the S3+Yzstate to the S3nYz•→ S4+Yzstep, and report for the first time that the reversible isomerism, which is suppressed in the S3+Yzstate, is fully recovered in the ensuing S3nYz•state due to the proton release from a manganese-bound water ligand. The altered coordination strength of the manganese-ligand facilitates formation of the closed-cubane form, in a dynamic equilibrium with the open-cubane form. This tautomerism immediately preceding dioxygen formation may constitute the rate limiting step for O2formation, and exert a significant influence on the water oxidation mechanism in photosystem II. 
  •  
6.
  • Moth-Poulsen, Kasper, 1978 (författare)
  • Molecular Systems for Solar Thermal Energy Storage and Conversion
  • 2013
  • Ingår i: Organic Synthesis and Molecular Engineering. - Hoboken, NJ, USA : John Wiley & Sons, Inc.. ; , s. 179-196
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • Using a synthetic approach to organic materials chemistry, this book sets forth tested and proven methods and practices that make it possible to engineer organic molecules offering special properties and functions. Throughout the book, plenty of real-world examples demonstrate the countless possibilities of creating one-of-a-kind molecules and supramolecular systems to support a broad range of applications. The book explores applications in both materials and bioorganic chemistry, including molecular electronics, energy storage, sensors, nanomedicine, and enzyme engineering.Organic Synthesis and Molecular Engineering consists of fourteen chapters, each one contributed by one or more leading international experts in the field. The contributions are based on a thorough review and analysis of the current literature as well as the authors' firsthand experience in the lab engineering new organic molecules. Designed as a practical lab reference, the book offers:Tested and proven synthetic approaches to organic materials chemistryMethods and practices to successfully engineer functionality into organic moleculesExplanations of the principles and concepts underlying self-assembly and supramolecular chemistryGuidance in selecting appropriate structural units used in the design and synthesis of functional molecules and materialsCoverage of the full range of applications in materials and bioorganic chemistryA full chapter on graphene, a new topic generating intense researchOrganic Synthesis and Molecular Engineering begins with core concepts, molecular building blocks, and synthetic tools. Next, it explores molecular electronics, supramolecular chemistry and self-assembly, graphene, and photoresponsive materials engineering. In short, it offers everything researchers need to fully grasp the underlying theory and then build new molecules and supramolecular systems.
  •  
7.
  • Rahm, Martin, et al. (författare)
  • The Molecular Surface Structure of Ammonium and Potassium Dinitramide : A Vibrational Sum Frequency Spectroscopy and Quantum Chemical Study
  • 2011
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 115:21, s. 10588-10596
  • Tidskriftsartikel (refereegranskat)abstract
    • Vibrational sum frequency spectroscopy (VSFS) and quantum chemical modeling have been employed to investigate the molecular surface structure of ammonium and potassium dinitramide (ADN and KDN) crystals. Identification of key vibrational modes was made possible by performing density functional theory calculations of molecular clusters. The surface of KDN was found to be partly covered with a thin layer of the decomposition product KNO3, which due to its low thickness was not detectable by infrared and Raman spectroscopy. In contrast, ADN exhibited an extremely inhomogeneous surface, on which polarized dinitramide anions were present, possibly together with a thin layer of NH4NO3. The intertwined use of theoretical and experimental tools proved indispensable in the analysis of these complex surfaces. The experimental verification of polarized and destabilized dinitramide anions stresses the importance of designing surface-active polymer support, stabilizers, and/or coating agents, in order to enable environmentally friendly ADN-based solid-rocket propulsion.
  •  
8.
  • Singh, Shivangi, 1996 (författare)
  • Investigating hydrothermal stability and influence of water on the activity of Cu-CHA catalysts for NH3-SCR
  • 2024
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Selective catalytic reduction of nitrogen oxides (NOx) with NH3 as a reducing agent (NH3- SCR) is a leading technology for diesel exhaust emission control. Cu-exchanged zeolites with the chabazite structure (Cu-CHA) have emerged as the preferred catalysts thanks to its high activity and hydrothermal stability. Hydrothermal stability is related to dealumination, i.e. removal of aluminum from the zeolite framework to form extraframework aluminum, at high temperatures in the presence of water vapor. Copperexchanged chabazite (Cu-CHA) zeolites have higher hydrothermal stability compared to H-chabazite (H-CHA). To understand the delayed dealumination of Cu-CHA catalysts, we have investigated the reaction paths for dealumination in H-CHA and Cu-CHA using density functional theory (DFT) calculations combined with microkinetic modeling. We find that Cu-CHA and H-CHA follow similar four-step hydrolysis processes, yet the dealumination of Cu-CHA has higher energy barriers, suggesting stabilization of the CHA structure by Cu ions. Furthermore, the preferred reaction product upon complete dealumination of Cu-CHA is a copper-aluminate like species bound to the zeolite framework. The microkinetic analysis quantifies the increased stability of Cu-CHA as compared to H-CHA. In addition to the high-temperature dealumination, we investigated the role of water on low-temperature SCR by experimentally measuring the activity and reaction order of water. The reaction order of water is found to be increasingly negative with increasing water pressure. DFT calculations reveal that water blocks the active Cu-sites and a DFT-based microkinetic model reproduces the measured change of reaction order with water pressure.
  •  
9.
  • Hedlund, Artur, et al. (författare)
  • Microstructures of cellulose coagulated in water and alcohols from 1-ethyl-3-methylimidazolium acetate : contrasting coagulation mechanisms
  • 2019
  • Ingår i: Cellulose. - : Springer Science and Business Media LLC. - 0969-0239 .- 1572-882X. ; 26:3, s. 1545-1563
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract: Coagulation of cellulose solutions is a process whereby many useful materials with variable microstructures and properties can be produced. This study investigates the complexity of the phase separation that generates the structural heterogeneity of such materials. The ionic liquid, 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]), and a co-solvent, dimethylsulfoxide (DMSO), are used to dissolve microcrystalline cellulose in concentrations from 5 to 25 wt%. The solutions are coagulated in water or 2-propanol (2PrOH). The coagulated material is then washed and solvent exchanged (water → 2PrOH → butanone → cyclohexane) in order to preserve the generated microstructures upon subsequent drying before analysis. Sweep electron microscopy images of 50 k magnification reveal open-pore fibrillar structures. The crystalline constituents of those fibrils are estimated using wide-angle X-ray spectroscopy and specific surface area data. It is found that the crystalline order or crystallite size is reduced by an increase in cellulose concentration, by the use of the co-solvent DMSO, or by the use of 2PrOH instead of water as the coagulant. Because previous theories cannot explain these trends, an alternative explanation is presented here focused on solid–liquid versus liquid–liquid phase separations. Graphical abstract: [Figure not available: see fulltext.].
  •  
10.
  • Sznitko, L., et al. (författare)
  • Low-threshold stimulated emission from lysozyme amyloid fibrils doped with a blue laser dye
  • 2015
  • Ingår i: Applied Physics Letters. - : AIP Publishing. - 0003-6951 .- 1077-3118. ; 106:2
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2015 AIP Publishing LLC. Amyloid fibrils are excellent self-assembling nanotemplates for organic molecules such as dyes. Here, we demonstrate that laser dye-doped lysozyme type fibrils exhibit significantly reduced threshold for stimulated emission compared to that observed in usual matrices. Laser action was studied in slab planar waveguides of the amyloids doped with Stilbene 420 laser dye prepared using a film casting technique. The lowering of the threshold of stimulated emission is analyzed in the context of intrinsic structure of the amyloid nanotemplates, electrostatic interaction of different microstructures with dye molecules, as well as material properties of the cast layers. All these factors are considered to be of importance for introducing gain for random laser operation.
  •  
11.
  •  
12.
  • Artemenko, A., et al. (författare)
  • Reference XPS spectra of amino acids
  • 2021
  • Konferensbidrag (refereegranskat)abstract
    • In this report we present XPS data for five amino acids (AAs) (tryptophan, methionine, glutamine, glutamic acid, and arginine) with different side chain groups measured in solid state (powder form). The theoretically and experimentally obtained chemical structure of AAs are compared. Here, we analyse and discuss C 1 s, N 1 s, O 1s and S 2p core level binding energies, FWHMs, atomic concentrations of the functional groups in AAs. The experimentally obtained and theoretically calculated ratio of atomic concentrations are compared. The zwitterionic nature of methionine and glutamine in solid state was determined from protonated amino groups in N 1s peak and deprotonated carboxylic groups in the C 1s spectrum. The obtained XPS results for AAs well correspond with previously reported data.
  •  
13.
  • Barišić, Antun, et al. (författare)
  • Experimental Data Contributing to the Elusive Surface Charge of Inert Materials in Contact with Aqueous Media
  • 2021
  • Ingår i: Colloids and interfaces. - : MDPI. - 2504-5377. ; 5:1
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • We studied the charging of inert surfaces (polytetrafluoroethylene, i.e., PTFE; graphite; graphene; and hydrophobic silica) using classical colloid chemistry approaches. Potentiometric titrations showed that these surfaces acquired less charge from proton-related reactions than oxide minerals. The data from batch-type titrations for PTFE powder did not show an effect of ionic strength, which was also in contrast with results for classical colloids. In agreement with classical colloids, the electrokinetic results for inert surfaces showed the typical salt level dependence. In some cases, the point of zero net proton charge as determined from mass and tentatively from acid–base titration differed from isoelectric points, which has also been previously observed, for example by Chibowski and co-workers for ice electrolyte interfaces. Finally, we found no evidence for surface contaminations of our PTFE particles before and after immersion in aqueous solutions. Only in the presence of NaCl-containing solutions did cryo-XPS detect oxygen from water. We believe that our low isoelectric points for PTFE were not due to impurities. Moreover, the measured buffering at pH 3 could not be explained by sub-micromolar concentrations of contaminants. The most comprehensive explanation for the various sets of data is that hydroxide ion accumulation occurred at the interfaces between inert surfaces and aqueous solutions.
  •  
14.
  • Brinck, Tore, et al. (författare)
  • Green Energetic Materials, Chapter 2: "Theoretical Design of Green Energetic Materials: Predicting Stability, Detection, Synthesis and Performance"
  • 2014
  • Ingår i: Green Energetic Materials. - 9781119941293 ; , s. 15-44
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • Since the end of the 20th century it has been increasingly realised that the use, or production, of many energetic materials leads to the release of substances which are harmful to both humans and the environment. To address this, the principles of green chemistry can be applied to the design of new products and their manufacturing processes, to create green energetic materials that are virtually free of environmental hazards and toxicity issues during manufacturing, storage, use and disposal. Active research is underway to develop new ingredients and formulations, green synthetic methods and non-polluting manufacturing processes.Green Energetic Materials provides a detailed account of the most recent research and developments in the field, including green pyrotechnics, explosives and propellants. From theoretical modelling and design of new materials, to the development of sustainable manufacturing processes, this book addresses materials already on the production line, as well as considering future developments in this evolving field.Topics covered include:Theoretical design of green energetic materialsDevelopment of green pyrotechnicsGreen primary and secondary explosivesOxidisers and binder materials for green propellantsEnvironmentally sustainable manufacturing technologies for energetic materialsElectrochemical methods for synthesis of energetic materials and waste remediationGreen Energetic Materials is a valuable resource for academic, industrial and governmental researchers working on the development of energetic materials, for both military and civilian applications.
  •  
15.
  • Brinck, T, et al. (författare)
  • Green Energetic Materials, Chapter 7: "Green propellants Based on Dinitramide Salts: Mastering Stability and Chemical Compatibility Issues"
  • 2014
  • Ingår i: Green Energetic Materials, kapitel 7. - 9781119941293 ; , s. 179-204
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • Since the end of the 20th century it has been increasingly realised that the use, or production, of many energetic materials leads to the release of substances which are harmful to both humans and the environment. To address this, the principles of green chemistry can be applied to the design of new products and their manufacturing processes, to create green energetic materials that are virtually free of environmental hazards and toxicity issues during manufacturing, storage, use and disposal. Active research is underway to develop new ingredients and formulations, green synthetic methods and non-polluting manufacturing processes.Green Energetic Materials provides a detailed account of the most recent research and developments in the field, including green pyrotechnics, explosives and propellants. From theoretical modelling and design of new materials, to the development of sustainable manufacturing processes, this book addresses materials already on the production line, as well as considering future developments in this evolving field.Topics covered include:Theoretical design of green energetic materialsDevelopment of green pyrotechnicsGreen primary and secondary explosivesOxidisers and binder materials for green propellantsEnvironmentally sustainable manufacturing technologies for energetic materialsElectrochemical methods for synthesis of energetic materials and waste remediationGreen Energetic Materials is a valuable resource for academic, industrial and governmental researchers working on the development of energetic materials, for both military and civilian applications.
  •  
16.
  • Nyström-Larsson, Ingalill, 1969, et al. (författare)
  • Materialanalys av sydsvenskt bonadsmåleri
  • 2007
  • Ingår i: Rapport: Sammanfattning av Riksantikvarieämbetets seminarieserie 2007 kring pågående FoU-projekt. ; , s. 23-24
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Bonadsmåleriet hade sin storhetstid 1750-1850, och var influerat av medeltida kalkmåleri och bildvävnad i kyrkorna. Bonaderna var temporära och prydde stugorna till fest. Motiven kan vara både bibliska och profana. Materialet är tyger (återanvända och hopfogade) och senare även papper. Mot slutet av perioden övergår hantverket i massproduktion. Tidigare har bonaderna framför allt studerats inom humaniora (exempelvis etnologi) och ett naturvetenskapligt perspektiv har saknats. Därför finns mycket knapphändiga uppgifter om materialet. Syftet med projektet är att: • Kartlägga materialanvändningen • Tolka och förstå materialutvecklingen • Klarlägga innehållet i de otydliga trivialnamnen • Bygga upp ett referensmaterial Genomförande Ett antal frågeställningar har satts upp inför studiet: • Vilka materialval har man gjort? • Skiljer måleriteknik, färg, materialval mellan bonader, och går det att urskilja geografiska skillnader eller är det en tidsmässig utveckling? • Kan bonader attribueras utifrån materialval och färgval? • Vad är det för pigment som döljs i trivialnamnen? Skriftliga källor räcker inte för att svara på dessa frågor utan måste komplet-teras med naturvetenskapliga analyser. Diskussion kring RÄA-seminariets specifika frågeställningar På vad sätt bidrar ert projekt till kunskapsuppbyggnaden inom ert område? • Projektet är också ett pilotprojekt och den kunskap som vinns kan också appliceras på annat än bonadsmåleri. Utifrån resultaten kan man också gå vidare och titta på handelsvägar, infrastruktur etc. • En referensdatabas byggs upp och kan kanske också användas för an-nat material. På vilket sätt skulle resultaten från ert projekt kunna tillämpas mer konkret inom kulturmiljösektorn? • Ett viktigt mål är att hitta analysmetoder som inte förstör materialet, och som helst kan göras på plats så att materialet inte behöver flyttas (Raman spektroskopi). • Som konstaterades ovan kan resultaten från den kemiska analysen visa att en sådan kan komplettera traditionella historiska metoder också inom andra områden än bonadsmåleri. Frågor och öppen diskussion • Ännu har man inte hittat några speciella pigment eller färger, men analysen är inte klar. • Analysmaterialet som valts ut är signerade bonader. • Eftersom uppbyggandet av referensdatabaser är centralt i konserva-torns arbete är det viktigt att sprida resultaten av projektet.
  •  
17.
  • Asfaw, Habtom Desta, Dr. 1986-, et al. (författare)
  • Facile synthesis of hard carbon microspheres from polyphenols for sodium-ion batteries : insight into local structure and interfacial kinetics
  • 2020
  • Ingår i: Materials Today Energy. - : Elsevier BV. - 2468-6069. ; 18
  • Tidskriftsartikel (refereegranskat)abstract
    • Hard carbons are the most promising negative active materials for sodium ion storage. In this work, a simple synthesis approach is proposed to produce hard carbon microspheres (CMSs) (with a mean diameter of ~1.3 μm) from resorcinol-formaldehyde precursors produced via acid-catalyzed polycondensation reaction. Samples prepared at 1200, 1400, and 1500 oC showed different electrochemical behavior in terms of reversible capacity, initial coulombic efficiency (iCE), and the mechanism of sodium ion storage. The specific capacity contributions from the flat voltage profile (<0.1 V) and the sloping voltage region (0.1–1 V) showed strong correlation to the local structure (and carbonization temperature) determined by the interlayer spacing (d002) and the Raman ID/IG ratio of the hard carbons (HCs) and the rate of cycling. Electrochemical tests indicated that the HC synthesized at 1500 oC performed best with an iCE of 85–89% and a reversible capacity of 300–340 mAh g−1 at 10 mA g−1, with the majority of charge stored below 0.1 V. The d002 and the ID/IG ratio for the sample were ~3.7 Å and ~1.27, respectively, parameters indicative of the ideal local structure in HCs required for optimum performance in sodium-ion cells. In addition, galvanostatic tests on three-electrode half-cells cells revealed that sodium metal plating occurred as cycling rates were increased beyond 80 mA g−1 leading to considerably high capacity and poor coulombic efficiency, a point that must be considered in full-cell batteries. Pairing the hard CMS electrodes with Prussian white positive electrode, a proof-of-concept cell could provide a specific capacity of almost 100 mAh g−1 maintained for more than 50 cycles with a nominal voltage of 3 V.
  •  
18.
  • Banerjee, Ambar, 1985-, et al. (författare)
  • Accessing metal-specific orbital interactions in C–H activation with resonant inelastic X-ray scattering
  • 2024
  • Ingår i: Chemical Science. - : Royal Society of Chemistry. - 2041-6520 .- 2041-6539. ; 15:7, s. 2398-2409
  • Tidskriftsartikel (refereegranskat)abstract
    • Photochemically prepared transition-metal complexes are known to be effective at cleaving the strong C–H bonds of organic molecules in room temperature solutions. There is also ample theoretical evidence that the two-way, metal to ligand (MLCT) and ligand to metal (LMCT), charge-transfer between an incoming alkane C–H group and the transition metal is the decisive interaction in the C–H activation reaction. What is missing, however, are experimental methods to directly probe these interactions in order to reveal what determines reactivity of intermediates and the rate of the reaction. Here, using quantum chemical simulations we predict and propose future time-resolved valence-to-core resonant inelastic X-ray scattering (VtC-RIXS) experiments at the transition metal L-edge as a method to provide a full account of the evolution of metal–alkane interactions during transition-metal mediated C–H activation reactions. For the model system cyclopentadienyl rhodium dicarbonyl (CpRh(CO)2), we demonstrate, by simulating the VtC-RIXS signatures of key intermediates in the C–H activation pathway, how the Rh-centered valence-excited states accessible through VtC-RIXS directly reflect changes in donation and back-donation between the alkane C–H group and the transition metal as the reaction proceeds via those intermediates. We benchmark and validate our quantum chemical simulations against experimental steady-state measurements of CpRh(CO)2 and Rh(acac)(CO)2 (where acac is acetylacetonate). Our study constitutes the first step towards establishing VtC-RIXS as a new experimental observable for probing reactivity of C–H activation reactions. More generally, the study further motivates the use of time-resolved VtC-RIXS to follow the valence electronic structure evolution along photochemical, photoinitiated and photocatalytic reactions with transition metal complexes.
  •  
19.
  • Brülls, Steffen, 1991, et al. (författare)
  • Bonding between π-Conjugated Polycations and Monolayer Graphene: Decisive Role of Anions
  • 2023
  • Ingår i: Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 127:4, s. 1917-28
  • Tidskriftsartikel (refereegranskat)abstract
    • Functionalization and precise modulation of the electronic properties of graphene are key processes in the development of new applications of this promising material. This study examines the potential of using organic polycations as p-dopants and/or anchoring motifs for non-covalent functionalization. A library of hybrid materials was prepared through wet-chemical non-covalent functionalization. Both chemical vapor deposition graphene and reduced graphene oxide were functionalized with a series of neutral and polycationic benzimidazole-based systems. We report on how both the number of anions and the size, shape, and magnitude of the positive charge of the benzimidazole-based systems cooperatively affect the redox properties as well as the affinity for and the nature of bonding to graphene. The redox properties of the benzimidazole-based systems were studied by cyclic voltammetry. The functionalized graphene materials were characterized by Raman spectroscopy, X-ray photoelectron spectroscopy, and time-of-flight secondary ion mass spectrometry. Density functional theory calculations were performed to make contact between the experimental results obtained for molecular samples and hybrid materials. No universal dependence of the binding affinity on a single parameter, such as the amount of positive charge or the size of the system, was found. Instead, the cooperative effect of the three-dimensional structure of the benzimidazole-based systems and the number of anions was found to play a pivotal role. Together, these parameters determine the degree of partial electron sharing and magnitude of dispersion forces involved in the binding of members of this family of benzimidazole-based systems to graphene.
  •  
20.
  • Busch, Michael, 1983, et al. (författare)
  • Water Oxidation on MnOx and IrOx: Why Similar Performance?
  • 2013
  • Ingår i: Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 117:1, s. 288-292
  • Tidskriftsartikel (refereegranskat)abstract
    • The critical steps in water oxidation at a binuclear Mn(II–IV) oxide site are revisited. Ideal stabilities of intermediates are confirmed by comparing to results for a binuclear Ir(III–V) system. The latter in turn is known to be an excellent water oxidation catalyst. The inefficiency of the binuclear Mn(II–IV) site is owing to the high activation energy for the chemical step whereby MnIV═O double bonds on adjacent sites are broken prior to forming the MnIII—O—O—MnIII peroxy moiety. A rationale for Mn(II–IV)—Mn(III–V) mixed oxidation state for water oxidation catalysis, analogous to mixed transition metal oxide systems, is offered. Possible virtues of the kinetic stability of the binuclear MnIV═O moiety are discussed, utilizing its oxidizing power by sidestepping oxygen evolution.
  •  
21.
  • Börje, Anna, 1961, et al. (författare)
  • New luminescent and redox-active mono- and polynuclear ruthenium(II) and osmium(II) polypyridine complexes
  • 2002
  • Ingår i: Journal of the Chemical Society-Dalton Transactions. - 1472-7773. ; :6, s. 843-848
  • Tidskriftsartikel (refereegranskat)abstract
    • A series of mono and polynuclear Ru(II) and Os(II) polypyridine complexes based on the bpy-O-bpy ligand {bpy-O-bpy = bis[4-(2,2'-bipyridinyl)]ether} has been prepared. The redox, absorption and luminescence properties of these species have been measured and compared with those of the [Ru(bpy)(3)](2+) and [Os(bpy)(3)](2+) parent compounds. Electrochemical oxidation involves the metal centers, and occurs reversibly in acetonitrile at room temperature at about +1.30 and +0.85 V vs. SCE, respectively, for the Ru- and Os-based units. Reduction is ligand-centered and features a first irreversible wave followed by several reversible processes. Absorption spectra are essentially the sum of the spectra of the component monometallic species. Luminescence emission is observed both in acetonitrile solution (298 K) and in frozen matrix (77 K), originating from (MLCT)-M-3 states. Homometallic complexes display luminescence properties which are close to that featured by the parent [M(bpy)(3)](2+) species. In heterometallic species luminescence is observed only from the Os-based unit, indicating that efficient energy transfer takes place from the Ru-based to the Os-based moiety. The results indicate that the electronic communication through the bpy-O-bpy bridging ligand is so small that it doesn't substantially modify the properties of the metal units, which are those of the corresponding isolated [M(bpy)(3)](2+) units, but large enough to allow efficient energy transfer through the bridge. The bpy-O-bpy bridging ligand appears thus a promising component for the synthesis of multimetallic antenna systems.
  •  
22.
  •  
23.
  • Edhborg, Fredrik, 1990, et al. (författare)
  • Singlet Energy Transfer in Anthracene-Porphyrin Complexes: Mechanism, Geometry, and Implications for Intramolecular Photon Upconversion
  • 2019
  • Ingår i: Journal of Physical Chemistry B. - : American Chemical Society (ACS). - 1520-5207 .- 1520-6106. ; 123:46, s. 9934-9943
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work we show that the mechanism for singlet excitation energy transfer (SET) in coordination complexes changes upon changing a single atom. SET is governed by two different mechanisms; Förster resonance energy transfer (FRET) based on Coulombic, through-space interactions, or Dexter energy transfer relying on exchange, through-bond interactions. On the basis of time-resolved fluorescence and transient absorption measurements, we conduct a mechanistic study of SET from a set of photoexcited anthracene donors to axially coordinated porphyrin acceptors, revealing the effect of coordination geometry and a very profound effect of the porphyrin central metal atom. We found that FRET is the dominating mechanism of SET for complexes with zinc-octaethylporphyrin (ZnOEP) as the acceptor, while Dexter energy transfer is the dominating mechanism of SET in a corresponding ruthenium complex (RuOEP). In addition, by analyzing the coordination geometry of the complexes and its temperature dependence, the binding angle potential energy of axially coordinated porphyrin complexes could be estimated. The results of this study are of fundamental importance and are discussed with respect to the consequences for developing intramolecular triplet-Triplet annihilation photon upconversion in coordination complexes.
  •  
24.
  • Hedenstedt, Kristoffer, 1979, et al. (författare)
  • Study of Hypochlorite Reduction Related to the Sodium Chlorate Process
  • 2016
  • Ingår i: Electrocatalysis. - : Springer Science and Business Media LLC. - 1868-2529 .- 1868-5994. ; 7:4, s. 326-335
  • Tidskriftsartikel (refereegranskat)abstract
    • Reduction of hypochlorite is the most important side reaction in the sodium chlorate reactor leading to high energy losses. Today chromate is added to the reactor solution to minimize the hypochlorite reduction but a replacement is necessary due to health and environmental risks with chromate. In order to understand the effect of different substrates on the hypochlorite reduction, α-FeOOH, γ-FeOOH, Cr2O3 and CrOH3 were electrodeposited on titanium and subjected to electrochemical investigations. These substances are commonly found on cathodes in the chlorate process and can serve as model substances for the experimental investigation. The mechanism of hypochlorite reduction was also studied using DFT calculations in which the reaction at Fe(III) and Cr(III) surface sites were considered in order to single out the electrocatalytic properties. The experimental results clearly demonstrated that the chromium films completely block the reduction of hypochlorite, while for the iron oxyhydroxides the process can readily occur. Since the electrocatalytic properties per se were shown by the DFT calculations to be very similar for Fe(III) and Cr(III) sites in the oxide matrix, other explanations for the blocking ability of chromium films are addressed and discussed in the context of surface charging, reduction of anions and conduction in the deposited films. The main conclusion is that the combined effect of electronic properties and reduction of negatively charged ions can explain the reduction kinetics of hypochlorite and the effect of chromate in the chlorate process.
  •  
25.
  • Kamlar, Martin, 1981, et al. (författare)
  • Polycyclizations of Ketoesters: Synthesis of Complex Tricycles with up to Five Stereogenic Centers from Available Starting Materials
  • 2020
  • Ingår i: Organic Letters. - : American Chemical Society (ACS). - 1523-7052 .- 1523-7060. ; 22:21, s. 8387-8391
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we present a polycyclization of oxotriphenylhexanoates. The polycyclization is governed by electronic effects, and three major synthetic paths have been established leading to stereochemically complex tricyclic frameworks with up to five stereogenic centers. The method is compatible with an array of functional groups, allowing pharmacophoric elements to be introduced post cyclization.
  •  
26.
  • Langer, Vratislav, 1949, et al. (författare)
  • Ethyl 1-ethyl-7-fluoro-4-oxo-1,4-dihydroquinoline-3-carboxylate: X-ray and DFT studies
  • 2011
  • Ingår i: Acta Crystallographica Section C: Crystal Structure Communications. - 0108-2701 .- 1600-5759. ; 67:10, s. o421-o424
  • Tidskriftsartikel (refereegranskat)abstract
    • The basic building unit in the structure of the title compound, C14H14FNO3, is pairs of molecules arranged in an antiparallel fashion, enabling weak C-H...O interactions. Each molecule is additionally involved in π-π interactions with neighbouring molecules. The pairs of molecules formed by the C-H...O hydrogen bonds and π-π interactions form ribbon-like chains running along the c axis. Theoretical calculations based on these pairs showed that, although the main intermolecular interaction is electrostatic, it is almost completely compensated by an exchange-repulsion contribution to the total energy. As a consequence, the dominating force is a dispersion interaction. The F atoms form weak C-F...H-C interactions with the H atoms of the neighbouring ethyl groups, with H...F separations in the range 2.59-2.80 Å.
  •  
27.
  • Pogorilyi, Roman, et al. (författare)
  • New product from old reaction : uniform magnetite nanoparticles from iron-mediated synthesis of alkali iodides and their protection from leaching in acidic media
  • 2014
  • Ingår i: RSC Advances. - : Royal Society of Chemistry (RSC). - 2046-2069. ; 4:43, s. 22606-22612
  • Tidskriftsartikel (refereegranskat)abstract
    • Iron-mediated synthesis of alkali metal iodides was quite unexpectedly demonstrated to be able to serve as a cost-efficient and reliable source of spherical single crystalline near-stoichiometric magnetite (Fe3O4) nanoparticles as revealed by TEM and XRD studies and also by XANES spectroscopic quantification of the Fe2+-content. Using the particles as nuclei for the Stoeber synthesis of silica nanoparticles, core-shell magnetic material has been produced. The nature of the magnetic component was probed by XANES spectroscopy. The size of the particles is dependent on the synthesis conditions and Si : Fe ratio but can be kept below 100 nm. It is the Si : Fe ratio that determines the stability of the particles in acidic medium. The latter was investigated spectrophotometrically as leaching of Fe3+-cations. Considerable stability was observed at Si : Fe > 10, while at Si : Fe >= 20 no measurable leaching could be observed in over 10 days. Magnetic nanoparticles with improved stability in acidic medium provide an attractive basis for creation of adsorbent materials for applications in harsh media.
  •  
28.
  • Renier, Olivier, et al. (författare)
  • Shape Preserving Single Crystal to Amorphous to Single Crystal Polymorphic Transformation Is Possible
  • 2021
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 143:48, s. 20202-20206
  • Tidskriftsartikel (refereegranskat)abstract
    • Many crystalline materials form polymorphs and undergo solid–solid transitions between different forms as a function of temperature or pressure. However, there is still a poor understanding of the mechanism of transformation. Conclusions about the transformation process are typically drawn by comparing the crystal structures before and after the conversion, but gaining detailed mechanistic knowledge is strongly impeded by the generally fast rate of these transitions. When the crystal morphology does not change, it is assumed that crystallinity is maintained throughout the process. Here we report transformation between polymorphs of ZnCl2(1,3-diethylimidazole-2-thione)2 which are sufficiently slow to allow unambiguous assignment of single crystal to single crystal transformation with shape preservation proceeding through an amorphous intermediate phase. This result fundamentally challenges the commonly accepted views of polymorphic phase transition mechanisms.
  •  
29.
  • Rzepka, Przemyslaw, et al. (författare)
  • CO2-Induced Displacement of Na+ and K+ in Zeolite INaKI-A
  • 2018
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 122:30, s. 17211-17220
  • Tidskriftsartikel (refereegranskat)abstract
    • Adsorption technologies offer opportunities to remove CO2 from gas mixtures, and zeolite A has good properties that include a high capacity for the adsorption of CO2 . It has been argued that its abilities to separate CO2 from N-2 in flue gas and CO2 from CH4 in raw biogas can be further enhanced by replacing Na+ with K+ in the controlling pore window apertures. In this study, several compositions of I Na12-xKxI-A were prepared and studied with respect to the adsorption of CO2 N-2, and CH4, and the detailed structural changes were induced by the adsorption of CO2. The adsorption of CO2 gradually decreased on an increasing content of K+, whereas the adsorption of N-2 and CH4 was completely nulled already at relatively small contents of K. Of the studied samples, INa9K3I-A exhibited the highest CO2 over N-2/CH4 selectivities, with a(CO2/N-2 ) > 21 000 and a(CO2/CH4) > 8000. For samples with and without adsorbed CO2 analyses of powder X-ray diffraction (PXRD) data revealed that K+ preferred to substitute Na+ at the eight-ring sites. The Na(+ )ions at the six-ring sites were gradually replaced by K+ on an increasing content, and these sites split into two positions on both sides of the six-ring mirror plane. It was observed that both the eight-ring and six-ring sites tailored the maximum adsorption capacity for CO2 and possibly also the diffusion of CO2 into the alpha-cavities of INa12-xKxI-A. The adsorption of CH4 and N-2 on the other hand appeared to be controlled by the K+ ions blocking the eight-ring windows. The in situ PXRD study revealed that the positions of the extra-framework cations were displaced into the a-cavities of INa12(_)x,KxI-A on the adsorption of CO2 . For samples with a low content of K+, the repositioning of the cations was consistent with a mutual attraction with the adsorbed CO(2 )molecules.
  •  
30.
  • Seisenbaeva, Gulaim, et al. (författare)
  • Molecular insight into the mode-of-action of phosphonate monolayers as active functions of hybrid metal oxide adsorbents. Case study in sequestration of rare earth elements
  • 2015
  • Ingår i: RSC Advances. - : Royal Society of Chemistry (RSC). - 2046-2069. ; 5:31, s. 24575-24585
  • Tidskriftsartikel (refereegranskat)abstract
    • The insight into the molecular aspects of ligand grafting and potential maximal capacity of hybrid organic-inorganic adsorbents bearing phosphonate ligand monolayers as active functions was obtained by single crystal X-ray studies of ligand-functionalized titanium alkoxide complexes. The attachment of molecules occurs generally in the tripodal vertical fashion with the minimal distance between them being about 8.7 angstrom, resulting in 0.19 nm(2) as the minimal surface area per function. In the present experimental work the theoretical loading capacity could almost be achieved for functionalization of mesoporous nanorods of anatase with imino-bis-methylphosphonic acid (IMPA, NH(CH2PO3H2)(2)) or aminoethylphosphonic acid (AEPA, H2NC2H4PO3H2). The products had the same morphology as the starting material, as was established by SEM and optical microscopy. The size and structure of the individual nanoparticles of the constituting inorganic component of the material were preserved and practically unchanged through the surface modification, as established by powder XRD and EXAFS studies. The surface area of the inorganic-organic hybrids decreased somewhat from the initial similar to 250 m(2) g(-1), on adsorption of AEPA (0.21 mmol g(-1)) to similar to 240 m(2) g(-1), and on adsorption of IMPA (0.17 mmol g(-1)) to similar to 190 m(2) g(-1). The ligands were bound effectively to the surface according to TGA, EDS and FTIR analyses and remained in the mono-deprotonated form. The produced hybrid adsorbents had for the selected pH (3.5) high capacities towards adsorption of Rare Earth Element (REE) cations, but with equilibria achieved relatively slowly. The composition of the surface complexes was determined as M : L = 1 : 1 for IMPA, but varied for the AEPA from 1 : 3 to 1 : 1 dependent on the REE, which can be interpreted in terms of charge compensation as the major driving force behind binding. The cation desorption in strongly acidic media for recuperation of the adsorbed REE and the relative capacity of the re-used adsorbent have been quantified.
  •  
31.
  • Steegstra, Patrick, 1978, et al. (författare)
  • Revisiting the Redox Properties of Hydrous Iridium Oxide Films in the Context of Oxygen Evolution
  • 2013
  • Ingår i: Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 117:40, s. 20975-20981
  • Tidskriftsartikel (refereegranskat)abstract
    • The electrochemistry of hydrous iridium oxide films (HIROF) is revisited. Cyclic voltammograms of HIROFs display two reversible redox couples commonly assigned to the Ir(III)/Ir(IV) and Ir(IV)/Ir(V) transitions, respectively. However, compared to the first, the second redox couple has significantly less charge associated to it. This effect is interpreted as partial oxidation of Ir(IV) as limited by nearest neighbor repulsion of resulting Ir(V) sites. Thus, the redox process is divided into two steps: one preceding and one overlapping the oxygen evolution reaction (OER). Here, the ``super-nernstian'' pH dependence of the redox processes in the HIROF is used to expose how pH controls the overpotential for oxygen evolution, as evidenced by the complementary increased formation of Ir(V) oxide. A recently formulated binuclear mechanism for the OER is employed to illustrate how hydrogen bonding may suppress the OER, thus implicitly favoring Ir(V) oxide formation above the thermodynamic onset potential for the OER at low pH.
  •  
32.
  • Thebault, Frederic, 1978, et al. (författare)
  • 2,3,6,7,10,11-Hexahydroxytri- phenylene tetrahydrate: a new form of an important starting material for supramolecular chemistry and covalent organic frameworks
  • 2011
  • Ingår i: Acta Crystallographica Section C: Crystal Structure Communications. - 0108-2701 .- 1600-5759. ; C67, s. o143-o145
  • Tidskriftsartikel (refereegranskat)abstract
    • In the title compound, C18H12O6?4H2O, the 2,3,6,7,10,11-hexa- hydroxytriphenylene molecule is located on a twofold axis and two water molecules occupy general positions. The compound forms (4,4) two-dimensional nets via hydrogen bonds between neighbouring hexahydroxytriphenylene molecules, somewhat similar to the cyclopentanone solvates but distinctively different from the monohydrate form. Hydrogen bonds to water molecules connect these layers to form a complicated three-dimensional net, supported also by strong %–% stacking.
  •  
33.
  • Tyumentsev, Mikhail S, 1988 (författare)
  • Development of Polyamide Solvent Extraction Reagents for Trivalent Lanthanides
  • 2016
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Rare earth elements (REEs), including lanthanides, are critical materials for many industrial technologies. As a result recycling of end-of-life products containing REEs might be beneficial, as this could partially satisfy the growing demands of industry for these elements. However, recycling of end-of-life products is often technically and/or commercially challenging. One possible method for the recycling of such materials is a hydrometallurgical treatment of wastes, which includes leaching of valuable metals (e.g. lanthanides) with mineral acids followed by solvent extraction for isolation and separation of the metals. As part of our efforts towards better REEs recycling, novel polyfunctional amides (polyamides) have been synthesized and tested as solvent extraction reagents for trivalent lanthanides in this work. The structure of the polyamide ligands was shown to affect largely the distribution ratios of trivalent lanthanides. It is very likely that the ability to form chelate complexes with lanthanide(III) ions is an important feature of the polyamides as solvent extraction reagents. It was demonstrated that it is possible to increase the distribution ratios of trivalent lanthanides using malonamides as extractants by increasing the denticity of the ligands. Thus the distribution ratios of lanthanide(III) ions obtained with the tetraamide 2,2’-(1,2-phenylenebis(methylene))bis(N,N,N’,N’-tetrabutylmalonamide), bearing two N,N,N’N’-tetrabutylmalonamide units on an ortho-xylylene platform, were up to one hundred times greater (under particular experimental conditions) than those with the diamide – N,N,N’N’-tetrabutylmalonamide – in two diluents – nitrobenzene and 1,2-dichlorobenzene. The increase of the distribution ratios of trivalent lanthanides obtained with this tetraamide can be attributed to the entropic effect. This conclusion follows from the studies of the stoichiometry of europium(III) extraction with the tetraamide, from the comparison of the distribution ratios of trivalent lanthanides obtained with the tetraamide and its structural isomers, and from the single-crystal diffraction studies of the neodymium(III) nitrate complex with the analogue of the tetraamide. It was shown that solvent extraction properties of the synthesized amides are sensitive to the nature of the diluent. Polar diluents promote the extraction of trivalent lanthanides with the amides. It was demonstrated that the use of the extraction chromatography resin with N,N,N’N’-tetrabutylmalonamide as an extractant and polystyrene as a support potentially can relieve the complications (e.g. toxicity, the third liquid phase formation etc.) introduced to the solvent extraction process by diluents. However further studies are needed to prove the feasibility of this alternative.
  •  
34.
  • Visibile, Alberto, et al. (författare)
  • Influence of Strain on the Band Gap of Cu2O
  • 2019
  • Ingår i: Chemistry of Materials. - : American Chemical Society (ACS). - 1520-5002 .- 0897-4756. ; 31:13, s. 4787-4792
  • Tidskriftsartikel (refereegranskat)abstract
    • Cu2O has been considered as a candidate material for transparent conducting oxides and photocatalytic water splitting. Both applications require suitably tuned band gaps. Here we explore the influence of compressive and tensile strain on the band gap by means of density functional theory (DFT) modeling. Our results indicate that the band gap decreases under tensile strain while it increases to a maximum under moderate compressive strain and decreases again under extreme compressive strain. This peculiar behavior is rationalized through a detailed analysis of the electronic structure by means of density of states (DOS), density overlap region indicators (DORI), and crystal overlap Hamilton populations (COHP). Contrary to previous studies we do not find any indications that the band gap is determined by d10-d10 interactions. Instead, our analysis clearly shows that both the conduction and the valence band edges are determined by Cu-O antibonding states. The band gap decrease under extreme compressive strain is associated with the appearance of Cu 4sp states in the conduction band region.
  •  
35.
  • Wiberg, Cedrik, 1989, et al. (författare)
  • The electrochemical response of core-functionalized naphthalene Diimides (NDI) – a combined computational and experimental investigation
  • 2021
  • Ingår i: Electrochimica Acta. - : Elsevier BV. - 0013-4686 .- 1873-3859. ; 367
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2020 Aqueous organic redox flow batteries (AORFBs) have attracted increased interest as sustainable energy storage devices due to the desire of increasing electricity production from renewable energy sources. Several organic systems have been tested as redox active systems in AORFBs but few fundamental electrochemical studies exist. This article provides reduction potentials and acid constants, pKa, of nine different core-substituted naphthalene diimides (NDI), calculated using density functional theory (DFT). Reduction potentials were acquired at each oxidation state for the nine species and were used to achieve a correlation between the electron donating ability of the substituents and the potential. Cyclic voltammograms were simulated using the scheme-of-squares framework to include both electron and proton transfer processes. The results show that the anion radical is unprotonated in the entire pH range, while the dianion can be protonated in one or two steps depending on the substituent. The core substituents may also have acid-base properties. and optimization of the redox properties for battery applications can therefore be obtained both by changing the core substituent and by changing pH of the electrolyte. Three core-substituted NDI molecules were studied experimentally and good qualitative agreement with the theoretically predicted behaviour was demonstrated. For 2,6-di(dimethylamino)-naphthalene diimide (2DMA-NDI), the calculations showed that one of the DMA substituents could be protonated in the accessible pH range and pKa was determined to 3.95 using 1H NMR spectroscopy. The redox mechanism of each molecule was explored and the qualitative agreement between theory and experiment clearly shows that this combination provides a better understanding of the systems and offers opportunities for further developments. The applicability of NDI for redox flow batteries is finally discussed.
  •  
36.
  • Wodrich, Matthew D., et al. (författare)
  • On the Generality of Molecular Volcano Plots
  • 2018
  • Ingår i: ChemCatChem. - : Wiley. - 1867-3899 .- 1867-3880. ; 10:7, s. 1586-1591
  • Tidskriftsartikel (refereegranskat)abstract
    • In homogeneous catalysis, the structure and electronic configuration of the active catalysts can vary significantly. Changes in ligation, oxidation, and spin states have the potential to influence the catalytic cycle energetics strongly that, to a large degree, dictate the catalytic performance. With the increased use of computational screening strategies aimed towards the identification of new catalysts, ambiguity surrounding structure/electronic configurations can be problematic, as it is unclear which species should be computed to determine a catalyst's properties. Here, we show that a single volcano plot constructed from linear free energy scaling relationships is able to account for variations in ligation, oxidation, and spin state. These linear scaling relationships can also be used to predict the free energies associated with a specific structure and electronic configuration of a catalyst based on a single descriptor. As a result, a single volcano plot can be used to screen prospective new catalysts rapidly.
  •  
37.
  • Yang, Yizhou, 1992, et al. (författare)
  • A self-standing three-dimensional covalent organic framework film
  • 2023
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723 .- 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Covalent crystals such as diamonds are a class of fascinating materials that are challenging to fabricate in the form of thin films. This is because spatial kinetic control of bond formation is required to create covalently bonded crystal films. Directional crystal growth is commonly achieved by chemical vapor deposition, an approach that is hampered by technical complexity and associated high cost. Here we report on a liquid-liquid interfacial approach based on physical-organic considerations to synthesize an ultrathin covalent crystal film. By distributing reactants into separate phases using hydrophobicity, the chemical reaction is confined to an interface that orients the crystal growth. A molecular-smooth interface combined with in-plane isotropic conditions enables the synthesis of films on a centimeter size scale with a uniform thickness of 13 nm. The film exhibits considerable mechanical robustness enabling a free-standing length of 37 µm, as well as a clearly anisotropic chemical structure and crystal lattice alignment.
  •  
38.
  • Younesi, Reza, et al. (författare)
  • Li-O-2 Battery Degradation by Lithium Peroxide (Li2O2): A Model Study
  • 2013
  • Ingår i: Chemistry of Materials. - : American Chemical Society (ACS). - 1520-5002 .- 0897-4756. ; 25:1, s. 77-84
  • Tidskriftsartikel (refereegranskat)abstract
    • The chemical stability of the Li-O-2 battery components (cathode and electrolyte) in contact with lithium peroxide (Li2O2) was investigated using X-ray photoelectron spectroscopy (XPS). XPS is a versatile method to detect amorphous as well as crystalline decomposition products of both salts and solvents. Two strategies were employed. First, cathodes including carbon, alpha-MnO2 catalyst, and Kynar binder (PVdF-HFP) were exposed to Li2O2 and LiClO4 in propylene carbonate (PC) or tetraethylene glycol dimethyl ether (TEGDME) electrolytes. The results indicated that Li2O2 degrades TEGDME to carboxylate containing species and that the decomposition products, in turn, degraded the Kynar binder. The alpha-MnO2 catalyst was unaffected. Second, Li2O2 model surfaces were kept in contact with different electrolytes to investigate the chemical stability and also the resulting surface layer on Li2O2. Further, the XPS experiments revealed that the Li salts such as LiPF6, LiBF4, and LiC!
  •  
39.
  • Zhang, Chu, et al. (författare)
  • Steps and catalytic reactions : CO oxidation with preadsorbed O on Rh(553)
  • 2022
  • Ingår i: Surface Science. - : Elsevier BV. - 0039-6028 .- 1879-2758. ; 715
  • Tidskriftsartikel (refereegranskat)abstract
    • Industrial catalysts are often comprised of nanoparticles supported on high-surface-area oxides, in order to maximise the catalytically active surface area and thereby utilise the active material better. These nanoparticles expose steps and corners that, due to low coordination to neighboring atoms, are more reactive and, as a consequence, are often assumed to have higher catalytic activity. We have investigated the reaction between CO and preadsorbed O on a stepped Rh(553) surface, and show that CO oxidation indeed occurs faster than on the flat Rh(111) surface at the same temperature. However, we do find that this is not a result of reactions at the step sites but rather at the terrace sites close to the steps, due to in-plane relaxation enabled by the step. This insight can provide ways to optimize the shape of the nanoparticles to further improve the activity of certain reactions.
  •  
40.
  • Öhrström, Lars, 1963 (författare)
  • Network and graph set analysis
  • 2012
  • Ingår i: Supramolecular Materials Chemistry, (Supramolecular Chemistry: From Molecules to Nanomaterials, Philip A. Gale and Jonathan W. Steed (eds.), vol.6). - Chichester, UK : John Wiley & Sons, Ltd. - 9780470746400 ; , s. 3057- 3072
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • In this chapter, it is first shown how a number of steps in the scientific process in this field of chemistry can be improved by naming and understanding the topology of three-dimensional networks and can be the coordination polymers, metal–organic frameworks, or hydrogen bonded systems. Specifically, the discussion is centered on the use of network analysis and graph set analysis to (i) understand the products we get, (ii) compare these materials to what others have made, (iii) communicate our results to colleagues, and (iv) truly make something new by design. The topology symbols by O'Keeffe, Wells, and others are introduced, and the reader is given a step-by-step guide on how to obtain the topology of a 3D net. Finally, graph set analysis is introduced, and its utility in supramolecular chemistry and network analysis discussed.
  •  
41.
  • Amombo Noa, Francoise Mystere, 1988, et al. (författare)
  • A hexagon based Mn(ii) rod metal-organic framework - structure, SF 6 gas sorption, magnetism and electrochemistry
  • 2023
  • Ingår i: Chemical Communications. - : Royal Society of Chemistry (RSC). - 1364-548X .- 1359-7345. ; 59:15, s. 2106-2109
  • Tidskriftsartikel (refereegranskat)abstract
    • A manganese(ii) metal-organic framework based on the hexatopic hexakis(4-carboxyphenyl)benzene, cpb6−: [Mn3(cpb)(dmf)3], was solvothermally prepared showing a Langmuir area of 438 m2 g−1, rapid uptake of sulfur hexafluoride (SF6) as well as electrochemical and magnetic properties, while single crystal diffraction reveals an unusual rod-MOF topology.
  •  
42.
  • Karmakar, Anirban, 1983, et al. (författare)
  • A new methanol solvate and Hirshfeld analysis of π-stacking in 2,3,6,7,10,11-hexahydroxytriphenylene solvates
  • 2013
  • Ingår i: Acta Crystallographica Section C: Crystal Structure Communications. - 0108-2701 .- 1600-5759. ; C69:3, s. 251-254
  • Tidskriftsartikel (refereegranskat)abstract
    • The structure of 2,3,6,7,10,11-hexahydroxytriphenylene (hhtp)methanol monosolvate, C18H12O6•CH3OH, has triclinicsymmetry (space group P1). The compound has a threedimensionallayered network structure formed by intermolecularhydrogen bonding. Structure analysis with Hirshfeldsurfaces is shown to be a sensitive method for comparing π -stacking effects in the five known solvates of hhtp. The titlestructure shows slightly weaker π -stacking than the dihydrate,but stronger π -stacking than the other three solvates.
  •  
43.
  • Li, Zhuofeng, 1991-, et al. (författare)
  • Tuning morphology, composition and oxygen reduction reaction (ORR) catalytic performance of manganese oxide particles fabricated by γ-radiation induced synthesis
  • 2021
  • Ingår i: Journal of Colloid and Interface Science. - : Elsevier BV. - 1095-7103 .- 0021-9797. ; 583, s. 71-79
  • Tidskriftsartikel (refereegranskat)abstract
    • A γ-radiation induced synthesis method is used to fabricate manganese oxide catalysts through both reduction and oxidation routes. It is shown that the morphology, composition and electrochemical performance of the produced manganese oxide particles can be tuned by altering the redox conditions. The catalysts prepared via radiolytic oxidation have a hollow spherical morphology, possess γ-MnO2 structure and show high catalytic activity for the complete four-electron reaction pathway of the oxygen reduction reaction (ORR) in alkaline electrolyte. Meanwhile, the catalysts synthesized via radiolytic reduction possess a rod-like morphology with a Mn3O4 bulk structure and favour the incomplete two-electron reaction pathway for ORR. The high catalytic activity of the manganese oxide synthesized via the oxidation route can be attributed to high electrochemical surface area and increased amount of Mn3+ on the surface as compared to those in the sample obtained via the reduction route.
  •  
44.
  • Wang, Xuan, et al. (författare)
  • Effects of Anthropogenic Chlorine on PM2.5 and Ozone Air Quality in China
  • 2020
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 54:16, s. 9908-9916
  • Tidskriftsartikel (refereegranskat)abstract
    • China has large anthropogenic chlorine emissions from agricultural fires, residential biofuel, waste incineration, coal combustion, and industrial processes. Here we quantify the effects of chlorine on fine particulate matter (PM2.5) and ozone air quality across China by using the GEOS-Chem chemical transport model with comprehensive anthropogenic emissions and detailed representation of gas-phase and heterogeneous chlorine chemistry. Comparison of the model to observed ClNO2, HCl, and particulate Cl- concentrations shows that reactive chlorine in China is mainly anthropogenic, unlike in other continental regions where it is mostly of marine origin. The model is successful in reproducing observed concentrations and their distributions, lending confidence in the anthropogenic chlorine emission estimates and the resulting chemistry. We find that anthropogenic chlorine emissions increase total inorganic PM2.5 by as much as 3.2 μg m-3 on an annual mean basis through the formation of ammonium chloride, partly compensated by a decrease of nitrate because ClNO2 formation competes with N2O5 hydrolysis. Annual mean MDA8 surface ozone increases by up to 1.9 ppb, mainly from ClNO2 chemistry, while reactivities of volatile organic compounds increase (by up to 48% for ethane). We find that a sufficient representation of chlorine chemistry in air quality models can be obtained from consideration of HCl/Cl- thermodynamics and ClNO2 chemistry, because other more complicated aspects of chlorine chemistry have a relatively minor effect.
  •  
45.
  • Öhrström, Lars, 1963 (författare)
  • Now you see me too Attaching chiral molecules to a chiral framework allows their molecular structures to be determined
  • 2016
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 353:6301, s. 754-755
  • Forskningsöversikt (refereegranskat)abstract
    • Knowledge of three-dimensional (3D) molecular structures is crucial for scientific advances in fields ranging from materials chemistry to medicine. For solar cell materials, human proteins, or new drugs, the revelation of the exact arrangement of atoms and bonds vastly advances understanding of their properties. On page 808 of this issue, Lee et al. (1) report an approach that allows better structural data to be obtained for large, complex organic molecules that are difficult to crystallize on their own.
  •  
46.
  • Andersson Trojer, Markus, et al. (författare)
  • Elastic strain-hardening and shear-thickening exhibited by thermoreversible physical hydrogels based on poly(alkylene oxide)-grafted hyaluronic acid or carboxymethylcellulose
  • 2020
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry. - 1463-9076 .- 1463-9084. ; 22:26, s. 14579-14590
  • Tidskriftsartikel (refereegranskat)abstract
    • The formation of strongly elastic physical gels based on poly(alkylene oxide)-grafted hyaluronan or carboxymethylcellulose, exhibiting both shear-thickening and strain-hardening have been studied using rheometry and explained using a slightly different interpretation of the transient network theory. The graft copolymers were prepared by a quantitative coupling reaction. Their aqueous solutions displayed a thermoreversible continuous transition from Newtonian fluid to viscoelastic solid which could be controlled by the reaction conditions. The evolution of all material properties of the gel could be categorized into two distinct temperature regimes with a fast evolution at low temperatures followed by a slow evolution at high temperatures. The activation energy of the zero shear viscosity and the relaxation time of the graft inside the interconnecting microdomains were almost identical to each other in both temperature regimes. This suggests that the number of microdomains remained approximately constant whereas the aggregation number inside the microdomains increased according to the binodal curve of the thermosensitive graft.
  •  
47.
  • Arvidsson, Adam, 1990 (författare)
  • Partial methane oxidation from electronic structure calculations
  • 2017
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Investigating catalytic reactions with computational methods is a powerful approach to understand fundamental aspects of catalytic reactions and find ways to guide catalytic design. Partial methane oxidation is one example of a reaction with intriguing challenges, where a detailed atomistic approach may help to unravel the bottlenecks of this, as of yet, inefficient reaction. Although methane only needs one oxygen atom for conversion to methanol, the direct oxidation is difficult; it is in fact so difficult that at many oil extraction sites, the methane that inevitably accompanies the crude oil is flared into carbon dioxide and water as gas-phase methane is too inconvenient to store and transport.The main challenge with partial oxidation of methane is to selectively control the oxidation and steer it towards methanol and prevent over-oxidation to CO2. There exist natural enzymes that can partially oxidize methane to methanol at ambient pressure and temperature, although very slowly. One inorganic analogue to these naturally occurring enzymes are zeolites, a porous material that can readily be synthesized and that have been shown to convert methane to methanol at ambient conditions with a high selectivity (>90 %). This has been realized for zeolites ion-exchanged with different metals, such as iron, cobalt, nickel, and copper. Although there have been many attempts to determine the active site for the reaction, there is still no consensus. One candidate that has been put forth is a [Cu-O-Cu]2+ motif experimentally characterized in the ZSM-5 zeolite. In this thesis, partial oxidation of methane is investigated, focusing on this dimer motif. By combining density functional theory calculations with microkinetic modelling, the catalytic performance of the dimer motif is investigated with a simple reaction mechanism for copper, but also with the copper atoms exchanged with nickel, cobalt, iron, silver, or gold. From these results, it is clear that this particular dimer site is a relevant candidate only for copper, and can be excluded in the continued search for active sites in nickel, cobalt, and iron ion-exchanged ZSM-5.To further understand how methanol is formed and interacts with Cu-ZSM-5, experimental and calculated infrared frequencies are compared for methanol and other adsorbates. The partial oxidation of methane is also studied for other systems with oxidants other than oxygen. In particular, methane oxidation with H2S to CH3SH and H2 is explored on molybdenum sulfide clusters.
  •  
48.
  •  
49.
  • Asfaw, Habtom Desta (författare)
  • Multifunctional Carbon Foams by Emulsion Templating : Synthesis, Microstructure, and 3D Li-ion Microbatteries
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Carbon foams are among the existing electrode designs proposed for use in 3D Li-ion microbatteries. For such electrodes to find applications in practical microbatteries, however, their void sizes, specific surface areas and pore volumes need be optimized. This thesis concerns the synthesis of highly porous carbon foams and their multifunctional applications in 3D microbatteries. The carbon foams are derived from polymers that are obtained by polymerizing high internal phase water-in-oil emulsions (HIPEs).In general, the carbonization of the sulfonated polymers yielded hierarchically porous structures with void sizes ranging from 2 to 35 µm and a BET specific surface area as high as 630 m2 g-1. Thermogravimetric and spectroscopic evidence indicated that the sulfonic acid groups, introduced during sulfonation, transformed above 250 oC to thioether (-C-S-) crosslinks which were responsible for the thermal stability and charring tendency of the polymer precursors. Depending on the preparation of the HIPEs, the specific surface areas and void-size distributions were observed to vary considerably. In addition, the pyrolysis temperature could also affect the microstructures, the degree of graphitization, and the surface chemistry of the carbon foams.Various potential applications were explored for the bespoke carbon foams. First, their use as freestanding active materials in 3D microbatteries was studied. The carbon foams obtained at 700 to 1500 oC suffered from significant irreversible capacity loss during the initial discharge. In an effort to alleviate this drawback, the pyrolysis temperature was raised to 2200 oC. The resulting carbon foams were observed to deliver high, stable areal capacities over several cycles. Secondly, the possibility of using these structures as 3D current collectors for various active materials was investigated in-depth. As a proof-of-concept demonstration, positive active materials like polyaniline and LiFePO4 were deposited on the 3D architectures by means of electrodeposition and sol-gel approach, respectively. In both cases, the composite electrodes exhibited reasonably high cyclability and rate performance at different current densities. The syntheses of niobium and molybdenum oxides and their potential application as electrodes in microbatteries were also studied. In such applications, the carbon foams served dual purposes as 3D scaffolds and as reducing reactants in the carbothermal reduction process. Finally, a facile method of coating carbon substrates with oxide nanosheets was developed. The approach involved the exfoliation of crystalline VO2 to prepare dispersions of hydrated V2O5, which were subsequently cast onto CNT paper to form oxide films of different thicknesses.
  •  
50.
  • Asfaw, Habtom Desta, 1986-, et al. (författare)
  • Nanosized LiFePO4-decorated emulsion-templated carbon foam for 3D micro batteries : a study of structure and electrochemical performance
  • 2014
  • Ingår i: Nanoscale. - Royal Society of Chemistry. - 2040-3364 .- 2040-3372. ; 6:15, s. 8804-8813
  • Tidskriftsartikel (refereegranskat)abstract
    • In this article, we report a novel 3D composite cathode fabricated from LiFePO4 nanoparticles deposited conformally on emulsion-templated carbon foam by a sol–gel method. The carbon foam is synthesized via a facile and scalable method which involves the carbonization of a high internal phase emulsion (polyHIPE) polymer template. Various techniques (XRD, SEM, TEM and electrochemical methods) are used to fully characterize the porous electrode and confirm the distribution and morphology of the cathode active material. The major benefits of the carbon foam used in our work are closely connected with its high surface area and the plenty of space suitable for sequential coating with battery components. After coating with a cathode material (LiFePO4nanoparticles), the 3D electrode presents a hierarchically structured electrode in which a porous layer of the cathode material is deposited on the rigid and bicontinuous carbon foam. The composite electrodes exhibit impressive cyclability and rate performance at different current densities affirming their importance as viable power sources in miniature devices. Footprint area capacities of 1.72 mA h cm−2 at 0.1 mA cm−2 (lowest rate) and 1.1 mA h cm−2 at 6 mA cm−2(highest rate) are obtained when the cells are cycled in the range 2.8 to 4.0 V vs. lithium.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 5158
Typ av publikation
tidskriftsartikel (4023)
konferensbidrag (395)
doktorsavhandling (342)
annan publikation (126)
licentiatavhandling (106)
forskningsöversikt (67)
visa fler...
bokkapitel (55)
rapport (29)
patent (6)
bok (4)
samlingsverk (redaktörskap) (2)
konstnärligt arbete (2)
proceedings (redaktörskap) (2)
visa färre...
Typ av innehåll
refereegranskat (4311)
övrigt vetenskapligt/konstnärligt (815)
populärvet., debatt m.m. (32)
Författare/redaktör
Jansson, Ulf (131)
Edström, Kristina (123)
Elding, Lars Ivar (123)
Gustafsson, Torbjörn (114)
Nyholm, Leif (109)
Larsson, Karin (80)
visa fler...
Hermansson, Kersti (80)
Nordlander, Ebbe (77)
Kessler, Vadim (74)
Hultman, Lars (69)
Rosén, Johanna (68)
Carlsson, Jan-Otto (66)
Zou, Xiaodong (64)
Persson, Ingmar (59)
Grönbeck, Henrik, 19 ... (59)
Ohlin, C. André (59)
Langer, Vratislav, 1 ... (57)
Westin, Gunnar (57)
Lu, Jun (56)
Boman, Mats (56)
Johansson, Patrik, 1 ... (53)
Seisenbaeva, Gulaim (53)
Hilborn, Jöns (51)
Ahlberg, Elisabet, 1 ... (49)
Öhrström, Lars, 1963 (48)
Hårsta, Anders (47)
Ott, Sascha (47)
Eklund, Per (47)
Svensson, Jan-Erik, ... (47)
Panas, Itai, 1959 (45)
Younesi, Reza (43)
Ekberg, Christian, 1 ... (42)
Thomas, John Oswald (41)
Nordblad, Per (41)
Lidin, Sven (40)
Lindbergh, Göran (38)
Rundlöf, Håkan (37)
Larsson, Karin, 1955 ... (37)
Norberg, Stefan, 197 ... (36)
Sun, Junliang (36)
Matic, Aleksandar, 1 ... (36)
Eriksson, Olle (36)
Johnsson, Mats (35)
Eriksson, Sten, 1958 (35)
Tellgren, Roland (35)
Häussermann, Ulrich (35)
Andersson, Yvonne (35)
Jonsson, Mats (33)
Lewin, Erik (33)
Casey, William H. (33)
visa färre...
Lärosäte
Uppsala universitet (1795)
Chalmers tekniska högskola (1406)
Kungliga Tekniska Högskolan (547)
Linköpings universitet (515)
Stockholms universitet (495)
Lunds universitet (487)
visa fler...
Göteborgs universitet (247)
Umeå universitet (238)
Sveriges Lantbruksuniversitet (180)
Luleå tekniska universitet (76)
RISE (57)
Malmö universitet (21)
Karlstads universitet (17)
Linnéuniversitetet (12)
Mälardalens universitet (10)
Mittuniversitetet (10)
Karolinska Institutet (10)
Örebro universitet (7)
Naturhistoriska riksmuseet (7)
Jönköping University (5)
Högskolan i Gävle (4)
Högskolan i Borås (4)
Högskolan Dalarna (4)
Högskolan i Halmstad (2)
Högskolan Väst (2)
IVL Svenska Miljöinstitutet (2)
Högskolan Kristianstad (1)
Naturvårdsverket (1)
Högskolan i Skövde (1)
Gymnastik- och idrottshögskolan (1)
Blekinge Tekniska Högskola (1)
VTI - Statens väg- och transportforskningsinstitut (1)
visa färre...
Språk
Engelska (5113)
Svenska (43)
Franska (1)
Odefinierat språk (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (5158)
Teknik (798)
Medicin och hälsovetenskap (67)
Lantbruksvetenskap (17)
Humaniora (15)
Samhällsvetenskap (5)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy