SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "hsv:(NATURAL SCIENCES) hsv:(Chemical Sciences) hsv:(Materials Chemistry) "

Search: hsv:(NATURAL SCIENCES) hsv:(Chemical Sciences) hsv:(Materials Chemistry)

  • Result 1-50 of 6948
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Maurina Morais, Eduardo, 1989, et al. (author)
  • Solvent-free synthesis of protic ionic liquids. Synthesis, characterization and computational studies of triazolium based ionic liquids
  • 2022
  • In: Journal of Molecular Liquids. - : Elsevier BV. - 0167-7322. ; 360
  • Journal article (peer-reviewed)abstract
    • A series of triazolium and imidazolium based protic ionic liquids were synthesized using a solvent-free method designed to address several limitations encountered with other commonly used methods. Using this method, pure (98–99% m/m) and dry (128–553 ppm of water) protic ionic liquids were synthesized (in a laboratory scale) without the need for purification methods that require heating the ionic liquid, hence avoiding the common issue of thermal decomposition. This method was also designed to allow for the accurate measurement of acid and base, and for the controlled mixing of both compounds, which is essential to avoid producing impure protic ionic liquids with excess of either acid or base. The system is constructed of only glass and chemically resistant polymer (PTFE and PVDF) parts, which avoid other contaminants that can result from unwanted reactions involving the reagents with common laboratory tools (metallic objects, paper, plastic, etc.). This process is described in detail in the paper as well as in a video. The resulting ionic liquids were carefully analyzed by spectroscopic and thermal methods designed to avoid water absorption, which is known to affect their properties. To complement this experimental characterization, computational chemistry tools were used to assess the ionic liquids’ properties, as well as to assign vibrational modes.
  •  
3.
  • Sauer, Christopher, 1993 (author)
  • Green Aromatics: Catalytic Valorisation of bio-derived 2,5-dimethylfuran over Zeolites and Zeotypes
  • 2022
  • Doctoral thesis (other academic/artistic)abstract
    • This thesis discusses the use of biomass as a potentially green feedstock for the chemical industry in the urgent shift away from fossil resources. I elaborate on reasons why we cannot afford to burn virgin biomass for energy production, among them a variety of ecosystem services that forests and other lands provide. In addition, the utilisation of biomass should be focused on products that sequester and lock away carbon for more extended periods, e.g. timber, materials and chemicals. In particular, biomass can be used as an alternative "carbon neutral" feedstock for the chemical industry, where we can preserve the already existing chemical complexity in the bio-based molecules. One example is the upgrading of furans to benzene, toluene and xylene (BTX) aromatics with the help of zeolite catalysis. These aromatics are important commodity chemicals, where the shift to a bio-based resource could make use of already existing knowledge, catalyst and production infrastructure. However, research is necessary to understand these new feedstock molecules and their interaction with the catalysts and to enable the design of applicable catalysts. In order to study the interaction of the furans, in particular 2,5-dimethylfuran (2,5-dmf), I describe and discuss the development of an analytical methodology that utilises infrared spectroscopy and mass spectrometry for the on-line identification and quantification of product molecules during catalytic reactions. This on-line analysis method is then applied to the catalytic conversion of 2,5-dmf to aromatics over a range of zeolite and zeotype catalysts. In-depth studies with ammonia as a probe molecule of the catalytic active acid sites, as well as temperature programmed experiments with ammonia and 2,5-dmf give insights into product distribution, selectivity changes and deactivation of the catalyst. For example, olefins and aromatics are initially preferred products, while with increasing time on stream, the isomerisation of 2,5-dmf becomes dominant. The incorporation of Ga into the zeotype framework, resulting in a Ga-Silicate, shows how targeted catalyst design can increase overall aromatics production. This catalyst is also suitable for selective isomerisation of 2,5-dmf to 2,4-dimethylfuran, which has a rare substitution pattern. Finally, itwas found that the most valuable of BTX,  p -xylene, can be produced more selectively when 2,5-dmf is pre-adsorbed onto zeolite ZSM-5 and then released during a temperature programmed product desorption.
  •  
4.
  • Maurina Morais, Eduardo, 1989 (author)
  • Synthesis of protic ionic liquids. Challenges and solutions for the synthesis of pure compounds.
  • 2022
  • Licentiate thesis (other academic/artistic)abstract
    • The urgent need to diversify our energy matrix is responsible for a renewed interest in fuel cell technology, which can use hydrogen gas, a renewable green fuel, as an energy source. This technology is currently a commercially available option, however, it still requires technological improvements before it can be widely used for different applications. One way this technology could potentially be improved is by increasing its temperature range of operation by developing new, anhydrous proton conducting materials. Protic ionic liquids, which are organic salts with low melting temperatures, are interesting candidates for this application, since they can conduct protons in the operational conditions of fuel cells and without the need of water. These compounds can be synthesized by a simple acid-base neutralization reaction, but certain considerations must be taken in order to obtain high quality (dry and pure) protic ionic liquids. In this thesis, a series of triazolium and imidazolium based protic ionic liquids were synthesized using a solvent-free method designed to address several limitations encountered with other commonly used methods. Using this method, pure (98-99% m/m) and dry (128-553 ppm of water) protic ionic liquids were synthesized (in a laboratory scale) without the need for purification methods that require heating the ionic liquid, hence avoiding the common issue of thermal decomposition. This method was also designed to allow for the accurate measurement of acid and base, and for the controlled mixing of both compounds, which is essential to avoid producing impure protic ionic liquids with excess of either acid or base. The system is consists of only glass and chemically resistant polymer(PTFE and PVDF) parts, which avoids other contaminants that can result from unwanted reactions involving the reagents with common laboratory tools (metallic objects, paper, plastic, etc.). The resulting ionic liquids were carefully analyzed by spectroscopic and thermal analysis methods designed to avoid water absorption, which is known to affect their properties. To complement this experimental characterization, computational chemistry tools were used to assess the ionic liquids’ properties, as well as to assign vibrational modes.
  •  
5.
  •  
6.
  • Börjesson, Karl, 1982, et al. (author)
  • Conjugated anthracene dendrimers with monomer-like fluorescence
  • 2014
  • In: RSC Advances. - : Royal Society of Chemistry (RSC). - 2046-2069. ; 4:38, s. 19846-19850
  • Journal article (peer-reviewed)abstract
    • Two generations of highly emissive conjugated anthracene dendrimers containing up to 9 anthracene units are presented. In these dendrimers, anthracene-like absorption and emission properties are preserved due to the relatively weak electronic coupling between the anthracene units, while evidence of fast crosstalk within the molecular framework is still observed.
  •  
7.
  • Halldin Stenlid, Joakim, 1987- (author)
  • Computational Studies of Chemical Interactions: Molecules, Surfaces and Copper Corrosion
  • 2017
  • Doctoral thesis (other academic/artistic)abstract
    • The chemical bond – a corner stone in science and a prerequisite for life – is the focus of this thesis. Fundamental and applied aspects of chemical bonding are covered including the development of new computational methods for the characterization and rationalization of chemical interactions. The thesis also covers the study of corrosion of copper-based materials. The latter is motivated by the proposed use of copper as encapsulating material for spent nuclear fuel in Sweden.In close collaboration with experimental groups, state-of-the-art computational methods were employed for the study of chemistry at the atomic scale. First, oxidation of nanoparticulate copper was examined in anoxic aqueous media in order to better understand the copper-water thermodynamics in relation to the corrosion of copper material under oxygen free conditions. With a similar ambition, the water-cuprite interface was investigated with regards to its chemical composition and reactivity. This was compared to the behavior of methanol and hydrogen sulfide at the cuprite surface.An overall ambition during the development of computational methods for the analysis of chemical bonding was to bridge the gap between molecular and materials chemistry. Theory and results are thus presented and applied in both a molecular and a solid-state framework. A new property, the local electron attachment energy, for the characterization of a compound’s local electrophilicity was introduced. Together with the surface electrostatic potential, the new property predicts and rationalizes regioselectivity and trends of molecular reactions, and interactions on metal and oxide nanoparticles and extended surfaces.Detailed atomistic understanding of chemical processes is a prerequisite for the efficient development of chemistry. We therefore envisage that the results of this thesis will find widespread use in areas such as heterogeneous catalysis, drug discovery, and nanotechnology.
  •  
8.
  • Moth-Poulsen, Kasper, 1978 (author)
  • Molecular Systems for Solar Thermal Energy Storage and Conversion
  • 2013
  • In: Organic Synthesis and Molecular Engineering. - Hoboken, NJ, USA : John Wiley & Sons, Inc.. ; , s. 179-196
  • Book chapter (other academic/artistic)abstract
    • Using a synthetic approach to organic materials chemistry, this book sets forth tested and proven methods and practices that make it possible to engineer organic molecules offering special properties and functions. Throughout the book, plenty of real-world examples demonstrate the countless possibilities of creating one-of-a-kind molecules and supramolecular systems to support a broad range of applications. The book explores applications in both materials and bioorganic chemistry, including molecular electronics, energy storage, sensors, nanomedicine, and enzyme engineering.Organic Synthesis and Molecular Engineering consists of fourteen chapters, each one contributed by one or more leading international experts in the field. The contributions are based on a thorough review and analysis of the current literature as well as the authors' firsthand experience in the lab engineering new organic molecules. Designed as a practical lab reference, the book offers:Tested and proven synthetic approaches to organic materials chemistryMethods and practices to successfully engineer functionality into organic moleculesExplanations of the principles and concepts underlying self-assembly and supramolecular chemistryGuidance in selecting appropriate structural units used in the design and synthesis of functional molecules and materialsCoverage of the full range of applications in materials and bioorganic chemistryA full chapter on graphene, a new topic generating intense researchOrganic Synthesis and Molecular Engineering begins with core concepts, molecular building blocks, and synthetic tools. Next, it explores molecular electronics, supramolecular chemistry and self-assembly, graphene, and photoresponsive materials engineering. In short, it offers everything researchers need to fully grasp the underlying theory and then build new molecules and supramolecular systems.
  •  
9.
  • Rahm, Martin, et al. (author)
  • The Molecular Surface Structure of Ammonium and Potassium Dinitramide : A Vibrational Sum Frequency Spectroscopy and Quantum Chemical Study
  • 2011
  • In: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 115:21, s. 10588-10596
  • Journal article (peer-reviewed)abstract
    • Vibrational sum frequency spectroscopy (VSFS) and quantum chemical modeling have been employed to investigate the molecular surface structure of ammonium and potassium dinitramide (ADN and KDN) crystals. Identification of key vibrational modes was made possible by performing density functional theory calculations of molecular clusters. The surface of KDN was found to be partly covered with a thin layer of the decomposition product KNO3, which due to its low thickness was not detectable by infrared and Raman spectroscopy. In contrast, ADN exhibited an extremely inhomogeneous surface, on which polarized dinitramide anions were present, possibly together with a thin layer of NH4NO3. The intertwined use of theoretical and experimental tools proved indispensable in the analysis of these complex surfaces. The experimental verification of polarized and destabilized dinitramide anions stresses the importance of designing surface-active polymer support, stabilizers, and/or coating agents, in order to enable environmentally friendly ADN-based solid-rocket propulsion.
  •  
10.
  • Singh, Shivangi, 1996 (author)
  • Investigating hydrothermal stability and influence of water on the activity of Cu-CHA catalysts for NH3-SCR
  • 2024
  • Licentiate thesis (other academic/artistic)abstract
    • Selective catalytic reduction of nitrogen oxides (NOx) with NH3 as a reducing agent (NH3- SCR) is a leading technology for diesel exhaust emission control. Cu-exchanged zeolites with the chabazite structure (Cu-CHA) have emerged as the preferred catalysts thanks to its high activity and hydrothermal stability. Hydrothermal stability is related to dealumination, i.e. removal of aluminum from the zeolite framework to form extraframework aluminum, at high temperatures in the presence of water vapor. Copperexchanged chabazite (Cu-CHA) zeolites have higher hydrothermal stability compared to H-chabazite (H-CHA). To understand the delayed dealumination of Cu-CHA catalysts, we have investigated the reaction paths for dealumination in H-CHA and Cu-CHA using density functional theory (DFT) calculations combined with microkinetic modeling. We find that Cu-CHA and H-CHA follow similar four-step hydrolysis processes, yet the dealumination of Cu-CHA has higher energy barriers, suggesting stabilization of the CHA structure by Cu ions. Furthermore, the preferred reaction product upon complete dealumination of Cu-CHA is a copper-aluminate like species bound to the zeolite framework. The microkinetic analysis quantifies the increased stability of Cu-CHA as compared to H-CHA. In addition to the high-temperature dealumination, we investigated the role of water on low-temperature SCR by experimentally measuring the activity and reaction order of water. The reaction order of water is found to be increasingly negative with increasing water pressure. DFT calculations reveal that water blocks the active Cu-sites and a DFT-based microkinetic model reproduces the measured change of reaction order with water pressure.
  •  
11.
  • Sun, Bing, et al. (author)
  • Ion transport in polycarbonate based solid polymer electrolytes : experimental and computational investigations
  • 2016
  • In: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry (RSC). - 1463-9076 .- 1463-9084. ; 18:14, s. 9504-9513
  • Journal article (peer-reviewed)abstract
    • Among the alternative host materials for solid polymer electrolytes (SPEs), polycarbonates have recently shown promising functionality in all-solid-state lithium batteries from ambient to elevated temperatures. While the computational and experimental investigations of ion conduction in conventional polyethers have been extensive, the ion transport in polycarbonates has been much less studied. The present work investigates the ionic transport behavior in SPEs based on poly(trimethylene carbonate) (PTMC) and its co-polymer with epsilon-caprolactone (CL) via both experimental and computational approaches. FTIR spectra indicated a preferential local coordination between Li+ and ester carbonyl oxygen atoms in the P(TMC20CL80) co-polymer SPE. Diffusion NMR revealed that the co-polymer SPE also displays higher ion mobilities than PTMC. For both systems, locally oriented polymer domains, a few hundred nanometers in size and with limited connections between them, were inferred from the NMR spin relaxation and diffusion data. Potentiostatic polarization experiments revealed notably higher cationic transference numbers in the polycarbonate based SPEs as compared to conventional polyether based SPEs. In addition, MD simulations provided atomic-scale insight into the structure-dynamics properties, including confirmation of a preferential Li+-carbonyl oxygen atom coordination, with a preference in coordination to the ester based monomers. A coupling of the Li-ion dynamics to the polymer chain dynamics was indicated by both simulations and experiments.
  •  
12.
  • Hedlund, Artur, et al. (author)
  • Microstructures of cellulose coagulated in water and alcohols from 1-ethyl-3-methylimidazolium acetate : contrasting coagulation mechanisms
  • 2019
  • In: Cellulose. - : Springer Science and Business Media LLC. - 0969-0239 .- 1572-882X. ; 26:3, s. 1545-1563
  • Journal article (peer-reviewed)abstract
    • Abstract: Coagulation of cellulose solutions is a process whereby many useful materials with variable microstructures and properties can be produced. This study investigates the complexity of the phase separation that generates the structural heterogeneity of such materials. The ionic liquid, 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]), and a co-solvent, dimethylsulfoxide (DMSO), are used to dissolve microcrystalline cellulose in concentrations from 5 to 25 wt%. The solutions are coagulated in water or 2-propanol (2PrOH). The coagulated material is then washed and solvent exchanged (water → 2PrOH → butanone → cyclohexane) in order to preserve the generated microstructures upon subsequent drying before analysis. Sweep electron microscopy images of 50 k magnification reveal open-pore fibrillar structures. The crystalline constituents of those fibrils are estimated using wide-angle X-ray spectroscopy and specific surface area data. It is found that the crystalline order or crystallite size is reduced by an increase in cellulose concentration, by the use of the co-solvent DMSO, or by the use of 2PrOH instead of water as the coagulant. Because previous theories cannot explain these trends, an alternative explanation is presented here focused on solid–liquid versus liquid–liquid phase separations. Graphical abstract: [Figure not available: see fulltext.].
  •  
13.
  • Sznitko, L., et al. (author)
  • Low-threshold stimulated emission from lysozyme amyloid fibrils doped with a blue laser dye
  • 2015
  • In: Applied Physics Letters. - : AIP Publishing. - 0003-6951 .- 1077-3118. ; 106:2
  • Journal article (peer-reviewed)abstract
    • © 2015 AIP Publishing LLC. Amyloid fibrils are excellent self-assembling nanotemplates for organic molecules such as dyes. Here, we demonstrate that laser dye-doped lysozyme type fibrils exhibit significantly reduced threshold for stimulated emission compared to that observed in usual matrices. Laser action was studied in slab planar waveguides of the amyloids doped with Stilbene 420 laser dye prepared using a film casting technique. The lowering of the threshold of stimulated emission is analyzed in the context of intrinsic structure of the amyloid nanotemplates, electrostatic interaction of different microstructures with dye molecules, as well as material properties of the cast layers. All these factors are considered to be of importance for introducing gain for random laser operation.
  •  
14.
  •  
15.
  • Artemenko, A., et al. (author)
  • Reference XPS spectra of amino acids
  • 2021
  • Conference paper (peer-reviewed)abstract
    • In this report we present XPS data for five amino acids (AAs) (tryptophan, methionine, glutamine, glutamic acid, and arginine) with different side chain groups measured in solid state (powder form). The theoretically and experimentally obtained chemical structure of AAs are compared. Here, we analyse and discuss C 1 s, N 1 s, O 1s and S 2p core level binding energies, FWHMs, atomic concentrations of the functional groups in AAs. The experimentally obtained and theoretically calculated ratio of atomic concentrations are compared. The zwitterionic nature of methionine and glutamine in solid state was determined from protonated amino groups in N 1s peak and deprotonated carboxylic groups in the C 1s spectrum. The obtained XPS results for AAs well correspond with previously reported data.
  •  
16.
  • Barišić, Antun, et al. (author)
  • Experimental Data Contributing to the Elusive Surface Charge of Inert Materials in Contact with Aqueous Media
  • 2021
  • In: Colloids and interfaces. - : MDPI. - 2504-5377. ; 5:1
  • Journal article (other academic/artistic)abstract
    • We studied the charging of inert surfaces (polytetrafluoroethylene, i.e., PTFE; graphite; graphene; and hydrophobic silica) using classical colloid chemistry approaches. Potentiometric titrations showed that these surfaces acquired less charge from proton-related reactions than oxide minerals. The data from batch-type titrations for PTFE powder did not show an effect of ionic strength, which was also in contrast with results for classical colloids. In agreement with classical colloids, the electrokinetic results for inert surfaces showed the typical salt level dependence. In some cases, the point of zero net proton charge as determined from mass and tentatively from acid–base titration differed from isoelectric points, which has also been previously observed, for example by Chibowski and co-workers for ice electrolyte interfaces. Finally, we found no evidence for surface contaminations of our PTFE particles before and after immersion in aqueous solutions. Only in the presence of NaCl-containing solutions did cryo-XPS detect oxygen from water. We believe that our low isoelectric points for PTFE were not due to impurities. Moreover, the measured buffering at pH 3 could not be explained by sub-micromolar concentrations of contaminants. The most comprehensive explanation for the various sets of data is that hydroxide ion accumulation occurred at the interfaces between inert surfaces and aqueous solutions.
  •  
17.
  • Brinck, Tore, et al. (author)
  • Green Energetic Materials, Chapter 2: "Theoretical Design of Green Energetic Materials: Predicting Stability, Detection, Synthesis and Performance"
  • 2014
  • In: Green Energetic Materials. - 9781119941293 ; , s. 15-44
  • Book chapter (other academic/artistic)abstract
    • Since the end of the 20th century it has been increasingly realised that the use, or production, of many energetic materials leads to the release of substances which are harmful to both humans and the environment. To address this, the principles of green chemistry can be applied to the design of new products and their manufacturing processes, to create green energetic materials that are virtually free of environmental hazards and toxicity issues during manufacturing, storage, use and disposal. Active research is underway to develop new ingredients and formulations, green synthetic methods and non-polluting manufacturing processes.Green Energetic Materials provides a detailed account of the most recent research and developments in the field, including green pyrotechnics, explosives and propellants. From theoretical modelling and design of new materials, to the development of sustainable manufacturing processes, this book addresses materials already on the production line, as well as considering future developments in this evolving field.Topics covered include:Theoretical design of green energetic materialsDevelopment of green pyrotechnicsGreen primary and secondary explosivesOxidisers and binder materials for green propellantsEnvironmentally sustainable manufacturing technologies for energetic materialsElectrochemical methods for synthesis of energetic materials and waste remediationGreen Energetic Materials is a valuable resource for academic, industrial and governmental researchers working on the development of energetic materials, for both military and civilian applications.
  •  
18.
  • Brinck, T, et al. (author)
  • Green Energetic Materials, Chapter 7: "Green propellants Based on Dinitramide Salts: Mastering Stability and Chemical Compatibility Issues"
  • 2014
  • In: Green Energetic Materials, kapitel 7. - 9781119941293 ; , s. 179-204
  • Book chapter (other academic/artistic)abstract
    • Since the end of the 20th century it has been increasingly realised that the use, or production, of many energetic materials leads to the release of substances which are harmful to both humans and the environment. To address this, the principles of green chemistry can be applied to the design of new products and their manufacturing processes, to create green energetic materials that are virtually free of environmental hazards and toxicity issues during manufacturing, storage, use and disposal. Active research is underway to develop new ingredients and formulations, green synthetic methods and non-polluting manufacturing processes.Green Energetic Materials provides a detailed account of the most recent research and developments in the field, including green pyrotechnics, explosives and propellants. From theoretical modelling and design of new materials, to the development of sustainable manufacturing processes, this book addresses materials already on the production line, as well as considering future developments in this evolving field.Topics covered include:Theoretical design of green energetic materialsDevelopment of green pyrotechnicsGreen primary and secondary explosivesOxidisers and binder materials for green propellantsEnvironmentally sustainable manufacturing technologies for energetic materialsElectrochemical methods for synthesis of energetic materials and waste remediationGreen Energetic Materials is a valuable resource for academic, industrial and governmental researchers working on the development of energetic materials, for both military and civilian applications.
  •  
19.
  • Asfaw, Habtom Desta, Dr. 1986-, et al. (author)
  • Facile synthesis of hard carbon microspheres from polyphenols for sodium-ion batteries : insight into local structure and interfacial kinetics
  • 2020
  • In: Materials Today Energy. - : Elsevier BV. - 2468-6069. ; 18
  • Journal article (peer-reviewed)abstract
    • Hard carbons are the most promising negative active materials for sodium ion storage. In this work, a simple synthesis approach is proposed to produce hard carbon microspheres (CMSs) (with a mean diameter of ~1.3 μm) from resorcinol-formaldehyde precursors produced via acid-catalyzed polycondensation reaction. Samples prepared at 1200, 1400, and 1500 oC showed different electrochemical behavior in terms of reversible capacity, initial coulombic efficiency (iCE), and the mechanism of sodium ion storage. The specific capacity contributions from the flat voltage profile (<0.1 V) and the sloping voltage region (0.1–1 V) showed strong correlation to the local structure (and carbonization temperature) determined by the interlayer spacing (d002) and the Raman ID/IG ratio of the hard carbons (HCs) and the rate of cycling. Electrochemical tests indicated that the HC synthesized at 1500 oC performed best with an iCE of 85–89% and a reversible capacity of 300–340 mAh g−1 at 10 mA g−1, with the majority of charge stored below 0.1 V. The d002 and the ID/IG ratio for the sample were ~3.7 Å and ~1.27, respectively, parameters indicative of the ideal local structure in HCs required for optimum performance in sodium-ion cells. In addition, galvanostatic tests on three-electrode half-cells cells revealed that sodium metal plating occurred as cycling rates were increased beyond 80 mA g−1 leading to considerably high capacity and poor coulombic efficiency, a point that must be considered in full-cell batteries. Pairing the hard CMS electrodes with Prussian white positive electrode, a proof-of-concept cell could provide a specific capacity of almost 100 mAh g−1 maintained for more than 50 cycles with a nominal voltage of 3 V.
  •  
20.
  • Benselfelt, Tobias, 1989- (author)
  • Design of Cellulose-based Materials by Supramolecular Assemblies
  • 2019
  • Doctoral thesis (other academic/artistic)abstract
    • Due to climate change and plastic pollution, there is an increasing demand for bio-based materials with similar properties to those of common plastics yet biodegradable. In this respect, cellulose is a strong candidate that is already being refined on a large industrial scale, but the properties differ significantly from those of common plastics in terms of shapeability and water-resilience.This thesis investigates how supramolecular interactions can be used to tailor the properties of cellulose-based materials by modifying cellulose surfaces or control the assembly of cellulose nanofibrils (CNFs). Most of the work is a fundamental study on interactions in aqueous environments, but some material concepts are presented and potential applications are discussed.The first part deals with the modification of cellulose by the spontaneous adsorption of xyloglucan or polyelectrolytes. The results indicate that xyloglucan adsorbs to cellulose due to the increased entropy of water released from the surfaces, which is similar to the increased entropy of released counter-ions that drives polyelectrolyte adsorption. The polyelectrolyte adsorption depends on the charge of the cellulose up to a limit after which the charge density affects only the first adsorbed layer in a multilayer formation.Latex nanoparticles with polyelectrolyte coronas can be adsorbed onto cellulose in order to prepare hydrophobic cellulose surfaces with strong and ductile wet adhesion, provided the glass transition of the core is below the ambient temperature.The second part of the thesis seeks to explain the interactions between different types of cellulose nanofibrils in the presence of different ions, using a model consisting of ion-ion correlation and specific ion effects, which can be employed to rationally design water-resilient and transparent nanocellulose films. The addition of small amounts of alginate also creates interpenetrating double networks, and these networks lead to a synergy which improves both the stiffness and the ductility of the films in water.A network model has been developed to understand these materials, with the aim to explain the properties of fibril networks, based on parameters such as the aspect ratio of the fibrils, the solidity of the network, and the ion-induced interactions that increase the friction between fibrils. With the help of this network model and the model for ion-induced interactions, we have created films with wet-strengths surpassing those of common plastics, or a ductility suitable for hygroplastic forming into water-resilient and biodegradable packages. Due to their transparency, water content, and the biocompatibility of cellulose, these materials are also suitable for biomaterial or bioelectronics applications. 
  •  
21.
  • Busch, Michael, 1983, et al. (author)
  • Water Oxidation on MnOx and IrOx: Why Similar Performance?
  • 2013
  • In: Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 117:1, s. 288-292
  • Journal article (peer-reviewed)abstract
    • The critical steps in water oxidation at a binuclear Mn(II–IV) oxide site are revisited. Ideal stabilities of intermediates are confirmed by comparing to results for a binuclear Ir(III–V) system. The latter in turn is known to be an excellent water oxidation catalyst. The inefficiency of the binuclear Mn(II–IV) site is owing to the high activation energy for the chemical step whereby MnIV═O double bonds on adjacent sites are broken prior to forming the MnIII—O—O—MnIII peroxy moiety. A rationale for Mn(II–IV)—Mn(III–V) mixed oxidation state for water oxidation catalysis, analogous to mixed transition metal oxide systems, is offered. Possible virtues of the kinetic stability of the binuclear MnIV═O moiety are discussed, utilizing its oxidizing power by sidestepping oxygen evolution.
  •  
22.
  • Li, Jing, et al. (author)
  • Towards the mechanism of electrochemical activity and self-healing of 1 wt% PTSA doped polyaniline in alkyd composite polymer coating : Combined AFM-based studies
  • 2016
  • In: RSC Advances. - : Royal Society of Chemistry. - 2046-2069. ; 6:23, s. 19111-19127
  • Journal article (peer-reviewed)abstract
    • A composite solvent-borne alkyd coating with 1 wt% p-toluene sulfonic acid (PTSA) doped polyaniline (PANI) was prepared. The mechanisms of electrochemical activity and self-healing properties of the composite coating were investigated by in situ atomic force microscopy (AFM), intermodulation AFM (ImAFM), electrochemical controlled (EC)-AFM combined with cyclic voltammetry (CV), Kelvin force microscopy (KFM), and Fourier transform infrared spectroscopy (FTIR), as well as open-circuit potential (OCP) and electrochemical impedance spectroscopy (EIS) methods. The ImAFM demonstrates the multiphase structure of the composite coating and a high compatibility between the doped PANI and alkyd matrix. The CV and EC-AFM results reveal a high electrochemical activity of the doped PANI in the composite coating as well as reversible redox reactions between the emeraldine salt (ES) and leuco emeraldine base (LB) forms. The Volta potential mapping of KFM demonstrates a strong self-healing ability of the doped PANI in air conditions. The good electrochemical connection between the fine network of PANI in the composite coating and metal surface underneath enable the occurrence of reversible redox reaction between the ES/LB forms of doped PANI and a concomitant release of dopant anions both in air and in 3 wt% NaCl solution as demonstrated by OCP and EIS results. These therefore lead to the strong passivation and self-healing effect of the composite coated on the carbon steel surface.
  •  
23.
  • Pogorilyi, Roman, et al. (author)
  • New product from old reaction : uniform magnetite nanoparticles from iron-mediated synthesis of alkali iodides and their protection from leaching in acidic media
  • 2014
  • In: RSC Advances. - : Royal Society of Chemistry (RSC). - 2046-2069. ; 4:43, s. 22606-22612
  • Journal article (peer-reviewed)abstract
    • Iron-mediated synthesis of alkali metal iodides was quite unexpectedly demonstrated to be able to serve as a cost-efficient and reliable source of spherical single crystalline near-stoichiometric magnetite (Fe3O4) nanoparticles as revealed by TEM and XRD studies and also by XANES spectroscopic quantification of the Fe2+-content. Using the particles as nuclei for the Stoeber synthesis of silica nanoparticles, core-shell magnetic material has been produced. The nature of the magnetic component was probed by XANES spectroscopy. The size of the particles is dependent on the synthesis conditions and Si : Fe ratio but can be kept below 100 nm. It is the Si : Fe ratio that determines the stability of the particles in acidic medium. The latter was investigated spectrophotometrically as leaching of Fe3+-cations. Considerable stability was observed at Si : Fe > 10, while at Si : Fe >= 20 no measurable leaching could be observed in over 10 days. Magnetic nanoparticles with improved stability in acidic medium provide an attractive basis for creation of adsorbent materials for applications in harsh media.
  •  
24.
  • Renier, Olivier, et al. (author)
  • Shape Preserving Single Crystal to Amorphous to Single Crystal Polymorphic Transformation Is Possible
  • 2021
  • In: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 143:48, s. 20202-20206
  • Journal article (peer-reviewed)abstract
    • Many crystalline materials form polymorphs and undergo solid–solid transitions between different forms as a function of temperature or pressure. However, there is still a poor understanding of the mechanism of transformation. Conclusions about the transformation process are typically drawn by comparing the crystal structures before and after the conversion, but gaining detailed mechanistic knowledge is strongly impeded by the generally fast rate of these transitions. When the crystal morphology does not change, it is assumed that crystallinity is maintained throughout the process. Here we report transformation between polymorphs of ZnCl2(1,3-diethylimidazole-2-thione)2 which are sufficiently slow to allow unambiguous assignment of single crystal to single crystal transformation with shape preservation proceeding through an amorphous intermediate phase. This result fundamentally challenges the commonly accepted views of polymorphic phase transition mechanisms.
  •  
25.
  • Rzepka, Przemyslaw, et al. (author)
  • CO2-Induced Displacement of Na+ and K+ in Zeolite INaKI-A
  • 2018
  • In: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 122:30, s. 17211-17220
  • Journal article (peer-reviewed)abstract
    • Adsorption technologies offer opportunities to remove CO2 from gas mixtures, and zeolite A has good properties that include a high capacity for the adsorption of CO2 . It has been argued that its abilities to separate CO2 from N-2 in flue gas and CO2 from CH4 in raw biogas can be further enhanced by replacing Na+ with K+ in the controlling pore window apertures. In this study, several compositions of I Na12-xKxI-A were prepared and studied with respect to the adsorption of CO2 N-2, and CH4, and the detailed structural changes were induced by the adsorption of CO2. The adsorption of CO2 gradually decreased on an increasing content of K+, whereas the adsorption of N-2 and CH4 was completely nulled already at relatively small contents of K. Of the studied samples, INa9K3I-A exhibited the highest CO2 over N-2/CH4 selectivities, with a(CO2/N-2 ) > 21 000 and a(CO2/CH4) > 8000. For samples with and without adsorbed CO2 analyses of powder X-ray diffraction (PXRD) data revealed that K+ preferred to substitute Na+ at the eight-ring sites. The Na(+ )ions at the six-ring sites were gradually replaced by K+ on an increasing content, and these sites split into two positions on both sides of the six-ring mirror plane. It was observed that both the eight-ring and six-ring sites tailored the maximum adsorption capacity for CO2 and possibly also the diffusion of CO2 into the alpha-cavities of INa12-xKxI-A. The adsorption of CH4 and N-2 on the other hand appeared to be controlled by the K+ ions blocking the eight-ring windows. The in situ PXRD study revealed that the positions of the extra-framework cations were displaced into the a-cavities of INa12(_)x,KxI-A on the adsorption of CO2 . For samples with a low content of K+, the repositioning of the cations was consistent with a mutual attraction with the adsorbed CO(2 )molecules.
  •  
26.
  • Sauer, Christopher, 1993 (author)
  • Green aromatics for a bio-based economy - Valorization of biomass derived model compounds over zeolites studied by online analysis
  • 2021
  • Licentiate thesis (other academic/artistic)abstract
    • In the strive towards sustainable chemical production, its carbon-based products can no longer be produced from fossil resources but need to be manufactured from a renewable feedstock. Simple aromatic building blocks like benzene, toluene and xylenes (BTX) can be obtained by catalytic valorization of biomass derived platform molecules such as furans provided efficient catalysts can be formulated. To evaluate catalysts for the conversion of furans to BTX and study the involved catalytic reactions, advanced analytical methods are needed. The observation of dynamic responses in catalytic activity and selectivity necessitates time-resolved analysis of rather complex hydrocarbon (HC) streams. In this work, an online analysis method combining Fourier transform infrared spectroscopy and ion molecule reaction mass spectrometry has been developed for the direct monitoring of the effluent stream during conversion of furans over zeolite catalysts. The sampling frequency is shown to be at least 4 per minute, which is considerably higher compared to that of separation-based methods operating on time scales of several minutes. A wide range of HCs and other smaller molecules is identified and individual species quantified simultaneously. The carbon balance of around 90% shows that the vast majority of the complex HC stream is indeed analysed. The developed online analysis has been applied to catalytic step-response experiments, where different zeolites were exposed to concentration steps of 2,5-dimethylfuran at steady temperatures. It is found that the HC stream consists of a range of olefins and aromatics, including BTX. Most interestingly, 2,5-dimethylfuran is isomerized to 2,4-dimethylfuran as well as 2- and 3-methyl-2-cyclopenten-1-one. The formation of BTX is linked to the availability of olefins, which is supported by temperature programmed desorption experiments. Furthermore, to build understanding of the catalytic mechanisms, surface species were characterised in situ by use of diffuse reflectance infrared Fourier transform spectroscopy. It is clear that upon adsorption, 2,5-dimethylfuran interacts with the zeolite structure and undergoes transforming reactions to olefins and aromatics upon temperature increase, but further studies are necessary to comprehend how the rather low selectivity towards BTX can be increased by catalyst design.
  •  
27.
  • Seisenbaeva, Gulaim, et al. (author)
  • Molecular insight into the mode-of-action of phosphonate monolayers as active functions of hybrid metal oxide adsorbents. Case study in sequestration of rare earth elements
  • 2015
  • In: RSC Advances. - : Royal Society of Chemistry (RSC). - 2046-2069. ; 5:31, s. 24575-24585
  • Journal article (peer-reviewed)abstract
    • The insight into the molecular aspects of ligand grafting and potential maximal capacity of hybrid organic-inorganic adsorbents bearing phosphonate ligand monolayers as active functions was obtained by single crystal X-ray studies of ligand-functionalized titanium alkoxide complexes. The attachment of molecules occurs generally in the tripodal vertical fashion with the minimal distance between them being about 8.7 angstrom, resulting in 0.19 nm(2) as the minimal surface area per function. In the present experimental work the theoretical loading capacity could almost be achieved for functionalization of mesoporous nanorods of anatase with imino-bis-methylphosphonic acid (IMPA, NH(CH2PO3H2)(2)) or aminoethylphosphonic acid (AEPA, H2NC2H4PO3H2). The products had the same morphology as the starting material, as was established by SEM and optical microscopy. The size and structure of the individual nanoparticles of the constituting inorganic component of the material were preserved and practically unchanged through the surface modification, as established by powder XRD and EXAFS studies. The surface area of the inorganic-organic hybrids decreased somewhat from the initial similar to 250 m(2) g(-1), on adsorption of AEPA (0.21 mmol g(-1)) to similar to 240 m(2) g(-1), and on adsorption of IMPA (0.17 mmol g(-1)) to similar to 190 m(2) g(-1). The ligands were bound effectively to the surface according to TGA, EDS and FTIR analyses and remained in the mono-deprotonated form. The produced hybrid adsorbents had for the selected pH (3.5) high capacities towards adsorption of Rare Earth Element (REE) cations, but with equilibria achieved relatively slowly. The composition of the surface complexes was determined as M : L = 1 : 1 for IMPA, but varied for the AEPA from 1 : 3 to 1 : 1 dependent on the REE, which can be interpreted in terms of charge compensation as the major driving force behind binding. The cation desorption in strongly acidic media for recuperation of the adsorbed REE and the relative capacity of the re-used adsorbent have been quantified.
  •  
28.
  • Steegstra, Patrick, 1978, et al. (author)
  • Revisiting the Redox Properties of Hydrous Iridium Oxide Films in the Context of Oxygen Evolution
  • 2013
  • In: Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 117:40, s. 20975-20981
  • Journal article (peer-reviewed)abstract
    • The electrochemistry of hydrous iridium oxide films (HIROF) is revisited. Cyclic voltammograms of HIROFs display two reversible redox couples commonly assigned to the Ir(III)/Ir(IV) and Ir(IV)/Ir(V) transitions, respectively. However, compared to the first, the second redox couple has significantly less charge associated to it. This effect is interpreted as partial oxidation of Ir(IV) as limited by nearest neighbor repulsion of resulting Ir(V) sites. Thus, the redox process is divided into two steps: one preceding and one overlapping the oxygen evolution reaction (OER). Here, the ``super-nernstian'' pH dependence of the redox processes in the HIROF is used to expose how pH controls the overpotential for oxygen evolution, as evidenced by the complementary increased formation of Ir(V) oxide. A recently formulated binuclear mechanism for the OER is employed to illustrate how hydrogen bonding may suppress the OER, thus implicitly favoring Ir(V) oxide formation above the thermodynamic onset potential for the OER at low pH.
  •  
29.
  • Visibile, Alberto, et al. (author)
  • Influence of Strain on the Band Gap of Cu2O
  • 2019
  • In: Chemistry of Materials. - : American Chemical Society (ACS). - 1520-5002 .- 0897-4756. ; 31:13, s. 4787-4792
  • Journal article (peer-reviewed)abstract
    • Cu2O has been considered as a candidate material for transparent conducting oxides and photocatalytic water splitting. Both applications require suitably tuned band gaps. Here we explore the influence of compressive and tensile strain on the band gap by means of density functional theory (DFT) modeling. Our results indicate that the band gap decreases under tensile strain while it increases to a maximum under moderate compressive strain and decreases again under extreme compressive strain. This peculiar behavior is rationalized through a detailed analysis of the electronic structure by means of density of states (DOS), density overlap region indicators (DORI), and crystal overlap Hamilton populations (COHP). Contrary to previous studies we do not find any indications that the band gap is determined by d10-d10 interactions. Instead, our analysis clearly shows that both the conduction and the valence band edges are determined by Cu-O antibonding states. The band gap decrease under extreme compressive strain is associated with the appearance of Cu 4sp states in the conduction band region.
  •  
30.
  • Yang, Yizhou, 1992, et al. (author)
  • A self-standing three-dimensional covalent organic framework film
  • 2023
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723 .- 2041-1723. ; 14:1
  • Journal article (peer-reviewed)abstract
    • Covalent crystals such as diamonds are a class of fascinating materials that are challenging to fabricate in the form of thin films. This is because spatial kinetic control of bond formation is required to create covalently bonded crystal films. Directional crystal growth is commonly achieved by chemical vapor deposition, an approach that is hampered by technical complexity and associated high cost. Here we report on a liquid-liquid interfacial approach based on physical-organic considerations to synthesize an ultrathin covalent crystal film. By distributing reactants into separate phases using hydrophobicity, the chemical reaction is confined to an interface that orients the crystal growth. A molecular-smooth interface combined with in-plane isotropic conditions enables the synthesis of films on a centimeter size scale with a uniform thickness of 13 nm. The film exhibits considerable mechanical robustness enabling a free-standing length of 37 µm, as well as a clearly anisotropic chemical structure and crystal lattice alignment.
  •  
31.
  • Younesi, Reza, et al. (author)
  • Li-O-2 Battery Degradation by Lithium Peroxide (Li2O2): A Model Study
  • 2013
  • In: Chemistry of Materials. - : American Chemical Society (ACS). - 1520-5002 .- 0897-4756. ; 25:1, s. 77-84
  • Journal article (peer-reviewed)abstract
    • The chemical stability of the Li-O-2 battery components (cathode and electrolyte) in contact with lithium peroxide (Li2O2) was investigated using X-ray photoelectron spectroscopy (XPS). XPS is a versatile method to detect amorphous as well as crystalline decomposition products of both salts and solvents. Two strategies were employed. First, cathodes including carbon, alpha-MnO2 catalyst, and Kynar binder (PVdF-HFP) were exposed to Li2O2 and LiClO4 in propylene carbonate (PC) or tetraethylene glycol dimethyl ether (TEGDME) electrolytes. The results indicated that Li2O2 degrades TEGDME to carboxylate containing species and that the decomposition products, in turn, degraded the Kynar binder. The alpha-MnO2 catalyst was unaffected. Second, Li2O2 model surfaces were kept in contact with different electrolytes to investigate the chemical stability and also the resulting surface layer on Li2O2. Further, the XPS experiments revealed that the Li salts such as LiPF6, LiBF4, and LiC!
  •  
32.
  • Zhang, Chu, et al. (author)
  • Steps and catalytic reactions : CO oxidation with preadsorbed O on Rh(553)
  • 2022
  • In: Surface Science. - : Elsevier BV. - 0039-6028 .- 1879-2758. ; 715
  • Journal article (peer-reviewed)abstract
    • Industrial catalysts are often comprised of nanoparticles supported on high-surface-area oxides, in order to maximise the catalytically active surface area and thereby utilise the active material better. These nanoparticles expose steps and corners that, due to low coordination to neighboring atoms, are more reactive and, as a consequence, are often assumed to have higher catalytic activity. We have investigated the reaction between CO and preadsorbed O on a stepped Rh(553) surface, and show that CO oxidation indeed occurs faster than on the flat Rh(111) surface at the same temperature. However, we do find that this is not a result of reactions at the step sites but rather at the terrace sites close to the steps, due to in-plane relaxation enabled by the step. This insight can provide ways to optimize the shape of the nanoparticles to further improve the activity of certain reactions.
  •  
33.
  • Amombo Noa, Francoise Mystere, 1988, et al. (author)
  • A hexagon based Mn(ii) rod metal-organic framework - structure, SF 6 gas sorption, magnetism and electrochemistry
  • 2023
  • In: Chemical Communications. - : Royal Society of Chemistry (RSC). - 1364-548X .- 1359-7345. ; 59:15, s. 2106-2109
  • Journal article (peer-reviewed)abstract
    • A manganese(ii) metal-organic framework based on the hexatopic hexakis(4-carboxyphenyl)benzene, cpb6−: [Mn3(cpb)(dmf)3], was solvothermally prepared showing a Langmuir area of 438 m2 g−1, rapid uptake of sulfur hexafluoride (SF6) as well as electrochemical and magnetic properties, while single crystal diffraction reveals an unusual rod-MOF topology.
  •  
34.
  • Bergman, Jenny, et al. (author)
  • Counting the number of enzymes immobilized onto a nanoparticle-coated electrode
  • 2018
  • In: Analytical and Bioanalytical Chemistry. - : Springer Science and Business Media LLC. - 1618-2642 .- 1618-2650. ; 410:6, s. 1775-1783
  • Journal article (peer-reviewed)abstract
    • To immobilize enzymes at the surface of a nanoparticle-based electrochemical sensor is a common method to construct biosensors for non-electroactive analytes. Studying the interactions between the enzymes and nanoparticle support is of great importance in optimizing the conditions for biosensor design. This can be achieved by using a combination of analytical methods to carefully characterize the enzyme nanoparticle coating at the sensor surface while studying the optimal conditions for enzyme immobilization. From this analytical approach, it was found that controlling the enzyme coverage to a monolayer was a key factor to significantly improve the temporal resolution of biosensors. However, these characterization methods involve both tedious methodologies and working with toxic cyanide solutions. Here we introduce a new analytical method that allows direct quantification of the number of immobilized enzymes (glucose oxidase) at the surface of a gold nanoparticle coated glassy carbon electrode. This was achieved by exploiting an electrochemical stripping method for the direct quantification of the density and size of gold nanoparticles coating the electrode surface and combining this information with quantification of fluorophore-labeled enzymes bound to the sensor surface after stripping off their nanoparticle support. This method is both significantly much faster compared to previously reported methods and with the advantage that this method presented is non-toxic.
  •  
35.
  • Boge, Lukas, 1987 (author)
  • Lipid-based liquid crystals as drug delivery vehicles for antimicrobial peptides
  • 2017
  • Licentiate thesis (other academic/artistic)abstract
    • The development of antimicrobial resistance is a great challenge within the health sector around the world. The demand for new efficient treatments is alarming in order to treat various bacterial infections in the near future. Antimicrobial peptides (AMPs) are a group of novel antibiotics that have gain more and more attraction the past decade. However, AMPs suffers from relatively low stability due to proteolytic and chemical degradation. As a consequence, carrier systems protecting the AMPs are highly needed for achieving efficient treatments. In this thesis, lyotropic liquid crystalline (LC) structures consisting of cubic glycerol monooleate/water and hexagonal glycerol monooleate/oleic acid/water have been examined as carriers for three AMPs (AP114, DPK-060 and LL-37). Both bulk gels and discrete dispersed structures, i.e. cubosomes and hexosomes have been studied. Moreover, two different peptide loading approaches for the cubosomes were tested and compared; pre- and post-loading. Characterization of the LC structures was performed using small-angle x-ray scattering (SAXS), dynamic light scattering, ζ-potential, and cryogenic transmission electron microscopy (Cryo-TEM) and peptide loading efficacy by liquid chromatography. The antimicrobial effect of the AMP loaded LC nanoparticles (LCNPs) was studied in vitro using minimum inhibitory concentration (MIC) and time-kill assays. Proteolytic protection was investigated by incubating the formulations with two elastases and the antimicrobial effect after proteolysis was studied using radial diffusion assay (RDA). Results showed that the most hydrophobic peptide (AP114) was prone to induce an increase in negative curvature of the bulk cubic LC gel, hence pushing the system towards a hexagonal structure. The most polar peptide (DPK-060) induced a decrease in negative curvature while LL-37 did not change the LC phase at all. The hexagonal LC phase was not affected by any of the AMPs. The cubic pre- and post-loaded LCNPs displayed promising antimicrobial activity, and sometimes could a synergetic effect be observed, resulting in a slightly better activity than the unformulated AMP. The hexagonal LCNPs were found to be very efficient in encapsulating the AMPs, but did not display any antimicrobial effect, indicating insufficient delivery of peptide to the bacteria. Moreover, cubosomes post-loaded with LL-37 was found to protect the peptide from proteolytic degradation, resulting in a significant better bactericidal effect after proteolysis.
  •  
36.
  • Dissanayake, Makl, et al. (author)
  • Solid-state solar cells co-sensitized with PbS/CdS quantum dots and N719 dye and based on solid polymer electrolyte with binary cations and nanofillers
  • 2021
  • In: Journal of Photochemistry and Photobiology a-Chemistry. - : Elsevier BV. - 1010-6030. ; 405
  • Journal article (peer-reviewed)abstract
    • Co-sensitized solar cells have gained more attention due to the ability of energy conversion process by absorbing photons from wide range of the solar spectrum including visible and near-infrared region. TiO2 electrodes were co-sensitized with PbS/CdS core-shell quantum dots and N719 dye. PbS/CdS/N719 dye-sensitized solar cells were fabricated with poly(ethylene oxide) based solid polymer electrolyte consisting iodide/triiodide redox couple. The iodide ion conductivity of the electrolyte was enhanced by incorporating a binary iodide salt mixture of different size cations, tetrapropylammonium iodide and potassium iodide. The performance of the solar cell was further enhanced by the incorporating TiO2 P90 nanofiller in the electrolyte. The best solid-state solar cell showed a significantly higher efficiency of 4.41 % with a short-circuit current density of 8.41 mA cm(-2), open circuit voltage of 748.3 mV and a high fill factor of 70.16 % under the simulated light of 100 mW cm(-2) with AM 1.5 filter. This is the first report describing the efficiency enhancement in a solid-state dye sensitized solar cell based on a solid polymer electrolyte incorporating a binary cation iodide salt and TiO2 nanofiller and a photoanode co-sensitized with PbS/CdS quantum dots and N719 dye demonstrating the cumulative effect by the mixed cation effect and co-sensitization.
  •  
37.
  • Fan, Qunping, 1989, et al. (author)
  • High-performance all-polymer solar cells enabled by a novel low bandgap non-fully conjugated polymer acceptor
  • 2021
  • In: Science in China Series B. - : Springer Nature. - 1674-7291 .- 1869-1870. ; 64, s. 1380-1388
  • Journal article (peer-reviewed)abstract
    • Anon-fully conjugated polymer as a new class of acceptor materials has shown some advantages over its small molecular counterpart when used in photoactive layers for all-polymer solar cells (all-PSCs), despite a low power conversion efficiency (PCE) caused by its narrow absorption spectra. Herein, a novel non-fully conjugated polymer acceptor PFY-2TS with a low bandgap of similar to 1.40 eV was developed, via polymerizing a large pi-fused small molecule acceptor (SMA) building block (namely YBO) with a non-conjugated thioalkyl linkage. Compared with its precursor YBO, PFY-2TS retains a similar low bandgap but a higher LUMO level. Moreover, compared with the structural analog of YBO-based fully conjugated polymer acceptor PFY-DTC, PFY-2TS shows similar absorption spectrum and electron mobility, but significantly different molecular crystallinity and aggregation properties, which results in optimal blend morphology with a polymer donor PBDB-T and better device physical processes in all-PSCs. As a result, PFY-2TS-based all-PSCs achieved a PCE of 12.31% with a small energy loss of 0.56 eV enabled by the reduced non-radiative energy loss (0.24 eV), which is better than that of 11.08% for the PFY-DTC-based ones. Our work clearly demonstrated that non-fully conjugated polymers as a new class of acceptor materials are very promising for the development of high-performance all-PSCs.
  •  
38.
  • Hagman, Benjamin, et al. (author)
  • Steps Control the Dissociation of CO2 on Cu(100)
  • 2018
  • In: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 1520-5126 .- 0002-7863. ; 140:40, s. 12974-12979
  • Journal article (peer-reviewed)abstract
    • CO2 reduction reactions, which provide one route to limit the emission of this greenhouse gas, are commonly performed over Cu-based catalysts. Here, we use ambient pressure X-ray photoelectron spectroscopy together with density functional theory to obtain an atomistic understanding of the dissociative adsorption of CO2 on Cu(100). We find that the process is dominated by the presence of steps, which promote both a lowering of the dissociation barrier and an efficient separation between adsorbed O and CO, reducing the probability for recombination. The identification of steps as sites for efficient CO2 dissociation provides an understanding that can be used in the design of future CO2 reduction catalysts.
  •  
39.
  • Li, Zhuofeng, 1991-, et al. (author)
  • Tuning morphology, composition and oxygen reduction reaction (ORR) catalytic performance of manganese oxide particles fabricated by γ-radiation induced synthesis
  • 2021
  • In: Journal of Colloid and Interface Science. - : Elsevier BV. - 1095-7103 .- 0021-9797. ; 583, s. 71-79
  • Journal article (peer-reviewed)abstract
    • A γ-radiation induced synthesis method is used to fabricate manganese oxide catalysts through both reduction and oxidation routes. It is shown that the morphology, composition and electrochemical performance of the produced manganese oxide particles can be tuned by altering the redox conditions. The catalysts prepared via radiolytic oxidation have a hollow spherical morphology, possess γ-MnO2 structure and show high catalytic activity for the complete four-electron reaction pathway of the oxygen reduction reaction (ORR) in alkaline electrolyte. Meanwhile, the catalysts synthesized via radiolytic reduction possess a rod-like morphology with a Mn3O4 bulk structure and favour the incomplete two-electron reaction pathway for ORR. The high catalytic activity of the manganese oxide synthesized via the oxidation route can be attributed to high electrochemical surface area and increased amount of Mn3+ on the surface as compared to those in the sample obtained via the reduction route.
  •  
40.
  • Pradhan, Sulena, et al. (author)
  • Effect of sonication on particle dispersion, administered dose and metal release of non-functionalized, non-inert metal nanoparticles
  • 2016
  • In: Journal of nanoparticle research. - : Springer. - 1388-0764 .- 1572-896X. ; 18:9
  • Journal article (peer-reviewed)abstract
    • In this study, we elucidate the effect of different sonication techniques to efficiently prepare particle dispersions from selected non-functionalized NPs (Cu, Al, Mn, ZnO), and corresponding consequences on the particle dose, surface charge and release of metals. Probe sonication was shown to be the preferred method for dispersing non-inert, non-functionalized metal NPs (Cu, Mn, Al). However, rapid sedimentation during sonication resulted in differences between the real and the administered doses in the order of 30–80 % when sonicating in 1 and 2.56 g/L NP stock solutions. After sonication, extensive agglomeration of the metal NPs resulted in rapid sedimentation of all particles. DLVO calculations supported these findings, showing the strong van der Waals forces of the metal NPs to result in significant NP agglomeration. Metal release from the metal NPs was slightly increased by increased sonication. The addition of a stabilizing agent (bovine serum albumin) had an accelerating effect on the release of metals in sonicated solutions. For Cu and Mn NPs, the extent of particle dissolution increased from <1.6 to ~5 % after sonication for 15 min. A prolonged sonication time (3–15 min) had negligible effects on the zeta potential of the studied NPs. In all, it is shown that it is of utmost importance to carefully investigate how sonication influences the physico-chemical properties of dispersed metal NPs. This should be considered in nanotoxicology investigations of metal NPs. Graphical Abstract: [Figure not available: see fulltext.]
  •  
41.
  • Svensson Grape, Erik, et al. (author)
  • A Robust and Biocompatible Bismuth Ellagate MOF Synthesized Under Green Ambient Conditions
  • 2020
  • In: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 1520-5126 .- 0002-7863. ; 142:39, s. 16795-16804
  • Journal article (peer-reviewed)abstract
    • The first bioinspired microporous metal-organic framework (MOF) synthesized using ellagic acid, a common natural antioxidant and polyphenol building unit, is presented. Bi2O(H2O)2(C14H2O8)·nH2O (SU-101) was inspired by bismuth phenolate metallodrugs, and could be synthesized entirely from nonhazardous or edible reagents under ambient aqueous conditions, enabling simple scale-up. Reagent-grade and affordable dietary supplement-grade ellagic acid was sourced from tree bark and pomegranate hulls, respectively. Biocompatibility and colloidal stability were confirmed by in vitro assays. The material exhibits remarkable chemical stability for a bioinspired MOF (pH = 2-14, hydrothermal conditions, heated organic solvents, biological media, SO2 and H2S), attributed to the strongly chelating phenolates. A total H2S uptake of 15.95 mmol g-1 was recorded, representing one of the highest H2S capacities for a MOF, where polysulfides are formed inside the pores of the material. Phenolic phytochemicals remain largely unexplored as linkers for MOF synthesis, opening new avenues to design stable, eco-friendly, scalable, and low-cost MOFs for diverse applications, including drug delivery.
  •  
42.
  • White, Jai, 1991- (author)
  • From Facets to Flow: The Electrooxidation of Glycerol on Pd-based catalysts
  • 2023
  • Doctoral thesis (other academic/artistic)abstract
    • Glycerol, a by-product of biodiesel refineries, has uses in industries such as cosmetics, food, and pharmaceuticals. However, its usage is small compared to the amount of glycerol produced from biodiesel production. Therefore, there is an opportunity to use glycerol, an important platform chemical, as a cheap feedstock for the synthesis of valuable chemicals. These chemicals can be formed in aqueous media through the glycerol electrooxidation reaction (GEOR) on the anode with hydrogen gas concurrently generated on the cathode. This thesis focuses on the GEOR in alkaline media on Pd and PdNi catalysts. The works compiled here evaluate the GEOR using electrochemical methods such as cyclic voltammetry, galvanostatic polarisation curves, chronoamperometry and chronopotentiometry. Pd and PdNi catalysts were fabricated through chemical synthesis, and electrodeposition onto Ni substrates. Singularly oriented Pd crystal facets were studied, showing those approximating Pd (111) as the most active. Similarly faceted bimetallic PdNi nanoparticles proved significantly more active than pure Pd. Effects of mass transport, studied for Pd/NiRDE and PdNi/NiRDE, indicated performance effects linked to diffusion and underutilisation of thicker catalyst layers. In aerated solutions, industrially relevant current densities were achieved on PdNi/Nifoam in concentrated electrolytes at elevated temperatures for extended periods. The analysis of glycerol oxidation products, formed during steady state measurements, was done using high performance liquid chromatography. The two major products were consistently shown to be glycerate and lactate. This work, covering many aspects of the GEOR, shows that Pd-based catalysts have potential for future industrial application.
  •  
43.
  • Andersson Trojer, Markus, et al. (author)
  • Elastic strain-hardening and shear-thickening exhibited by thermoreversible physical hydrogels based on poly(alkylene oxide)-grafted hyaluronic acid or carboxymethylcellulose
  • 2020
  • In: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry. - 1463-9076 .- 1463-9084. ; 22:26, s. 14579-14590
  • Journal article (peer-reviewed)abstract
    • The formation of strongly elastic physical gels based on poly(alkylene oxide)-grafted hyaluronan or carboxymethylcellulose, exhibiting both shear-thickening and strain-hardening have been studied using rheometry and explained using a slightly different interpretation of the transient network theory. The graft copolymers were prepared by a quantitative coupling reaction. Their aqueous solutions displayed a thermoreversible continuous transition from Newtonian fluid to viscoelastic solid which could be controlled by the reaction conditions. The evolution of all material properties of the gel could be categorized into two distinct temperature regimes with a fast evolution at low temperatures followed by a slow evolution at high temperatures. The activation energy of the zero shear viscosity and the relaxation time of the graft inside the interconnecting microdomains were almost identical to each other in both temperature regimes. This suggests that the number of microdomains remained approximately constant whereas the aggregation number inside the microdomains increased according to the binodal curve of the thermosensitive graft.
  •  
44.
  •  
45.
  • Asfaw, Habtom Desta (author)
  • Multifunctional Carbon Foams by Emulsion Templating : Synthesis, Microstructure, and 3D Li-ion Microbatteries
  • 2017
  • Doctoral thesis (other academic/artistic)abstract
    • Carbon foams are among the existing electrode designs proposed for use in 3D Li-ion microbatteries. For such electrodes to find applications in practical microbatteries, however, their void sizes, specific surface areas and pore volumes need be optimized. This thesis concerns the synthesis of highly porous carbon foams and their multifunctional applications in 3D microbatteries. The carbon foams are derived from polymers that are obtained by polymerizing high internal phase water-in-oil emulsions (HIPEs).In general, the carbonization of the sulfonated polymers yielded hierarchically porous structures with void sizes ranging from 2 to 35 µm and a BET specific surface area as high as 630 m2 g-1. Thermogravimetric and spectroscopic evidence indicated that the sulfonic acid groups, introduced during sulfonation, transformed above 250 oC to thioether (-C-S-) crosslinks which were responsible for the thermal stability and charring tendency of the polymer precursors. Depending on the preparation of the HIPEs, the specific surface areas and void-size distributions were observed to vary considerably. In addition, the pyrolysis temperature could also affect the microstructures, the degree of graphitization, and the surface chemistry of the carbon foams.Various potential applications were explored for the bespoke carbon foams. First, their use as freestanding active materials in 3D microbatteries was studied. The carbon foams obtained at 700 to 1500 oC suffered from significant irreversible capacity loss during the initial discharge. In an effort to alleviate this drawback, the pyrolysis temperature was raised to 2200 oC. The resulting carbon foams were observed to deliver high, stable areal capacities over several cycles. Secondly, the possibility of using these structures as 3D current collectors for various active materials was investigated in-depth. As a proof-of-concept demonstration, positive active materials like polyaniline and LiFePO4 were deposited on the 3D architectures by means of electrodeposition and sol-gel approach, respectively. In both cases, the composite electrodes exhibited reasonably high cyclability and rate performance at different current densities. The syntheses of niobium and molybdenum oxides and their potential application as electrodes in microbatteries were also studied. In such applications, the carbon foams served dual purposes as 3D scaffolds and as reducing reactants in the carbothermal reduction process. Finally, a facile method of coating carbon substrates with oxide nanosheets was developed. The approach involved the exfoliation of crystalline VO2 to prepare dispersions of hydrated V2O5, which were subsequently cast onto CNT paper to form oxide films of different thicknesses.
  •  
46.
  • Asfaw, Habtom Desta, 1986-, et al. (author)
  • Nanosized LiFePO4-decorated emulsion-templated carbon foam for 3D micro batteries : a study of structure and electrochemical performance
  • 2014
  • In: Nanoscale. - Royal Society of Chemistry. - 2040-3364 .- 2040-3372. ; 6:15, s. 8804-8813
  • Journal article (peer-reviewed)abstract
    • In this article, we report a novel 3D composite cathode fabricated from LiFePO4 nanoparticles deposited conformally on emulsion-templated carbon foam by a sol–gel method. The carbon foam is synthesized via a facile and scalable method which involves the carbonization of a high internal phase emulsion (polyHIPE) polymer template. Various techniques (XRD, SEM, TEM and electrochemical methods) are used to fully characterize the porous electrode and confirm the distribution and morphology of the cathode active material. The major benefits of the carbon foam used in our work are closely connected with its high surface area and the plenty of space suitable for sequential coating with battery components. After coating with a cathode material (LiFePO4nanoparticles), the 3D electrode presents a hierarchically structured electrode in which a porous layer of the cathode material is deposited on the rigid and bicontinuous carbon foam. The composite electrodes exhibit impressive cyclability and rate performance at different current densities affirming their importance as viable power sources in miniature devices. Footprint area capacities of 1.72 mA h cm−2 at 0.1 mA cm−2 (lowest rate) and 1.1 mA h cm−2 at 6 mA cm−2(highest rate) are obtained when the cells are cycled in the range 2.8 to 4.0 V vs. lithium.
  •  
47.
  •  
48.
  • Bjerregaard, Joachim, 1996, et al. (author)
  • Interpretation of H 2 -TPR from Cu-CHA Using First-Principles Calculations
  • 2024
  • In: Journal of Physical Chemistry C. - 1932-7447 .- 1932-7455. ; 128:11, s. 4525-4534
  • Journal article (peer-reviewed)abstract
    • Temperature-programmed reduction and oxidation are used to obtain information on the presence and abundance of different species in complex catalytic materials. The interpretation of the temperature-programmed reaction profiles is, however, often challenging. One example is H2 temperature-programmed reduction (H2-TPR) of Cu-chabazite (Cu-CHA), which is a material used for ammonia assisted selective catalytic reduction of NOx (NH3-SCR). The TPR profiles of Cu-CHA consist generally of three main peaks. A peak at 220 °C is commonly assigned to ZCuOH, whereas peaks at 360 and 500 °C generally are assigned to Z2Cu, where Z represents an Al site. Here, we analyze H2-TPR over Cu-CHA by density functional theory calculations, microkinetic modeling, and TPR measurements of samples pretreated to have a dominant Cu species. We find that H2 can react with Cu ions in oxidation state +2, whereas adsorption on Cu ions in +1 is endothermic. Kinetic modeling of the TPR profiles suggests that the 220 °C peak can be assigned to Z2CuOCu and ZCuOH, whereas the peaks at higher temperatures can be assigned to paired Z2Cu and Z2CuHOOHCu species (360 °C) or paired Z2Cu and Z2CuOOCu (500 °C). The results are in good agreement with the experiments and facilitate the interpretation of future TPR experiments.
  •  
49.
  • Feng, Yingxin, 1994 (author)
  • Reaction kinetics of NH3-SCR over Cu-CHA from first principles
  • 2024
  • Doctoral thesis (other academic/artistic)abstract
    • Ammonia-assisted selective catalytic reduction (NH3-SCR) is an advanced technology to reduce nitrogen oxide (NOx) emissions from lean-burn engines. NH3 is added to the exhaust gas and reacts selectively with NOx, forming N2 and H2O. Small-pore Cu-exchanged chabazite (Cu-CHA) is a widely used zeolite-based catalyst for NH3-SCR thanks to its high activity, high selectivity, and durability. However, one issue is the formation of small amounts of nitrous oxide (N2O), which is a strong greenhouse gas. Atomic level understanding is valuable to improve the performance of NH3-SCR catalyst and meet the increasingly stringent emission standards. The state of Cu-CHA during NH3-SCR reaction depends sensitively on the reaction temperature. At low temperatures, Cu-ions are solvated by NH3, forming Cu[(NH3)2]+ complexes, while framework-bound Cu dominates at high temperatures. Experimentally, a non-monotonic behavior in NO conversion is observed with increasing temperature, which reflects a change in the active site. In this thesis, NH3-SCR over Cu-CHA is investigated using density functional theory (DFT) calculations and kinetic simulations. In the low-temperature range (<250℃), a pair of Cu[(NH3)2]+ is required for O2 adsorption to form a Cu-peroxo complex, which is a key Cu-intermediate. The reaction intermediates HONO and H2NNO can be converted to N2 and H2O over Brønsted acid sites. H2NNO is found to be the origin of N2O formation when decomposing over Cu-peroxo species. At high-temperature (>350℃), the proposed reaction mechanism suggests that the reaction proceeds over single framework Cu sites and starts from the co-adsorption of O2 and NO. The main source of N2O formation at high temperatures is suggested to be ammonium nitrate decomposition. By combining the reaction mechanisms for high and low temperatures, the non-monotonic temperature-dependent reaction activity is successfully reproduced. The present work deepens the understanding of the reaction mechanism of NH3-SCR on Cu-CHA in a wide temperature range and provides theoretical support for further improvement of the catalyst performance.
  •  
50.
  • Gejke, Cecilia, 1973, et al. (author)
  • The effect of lithium insertion on the structure of tin oxide-based glasses
  • 2001
  • In: Journal of Power Sources. - 0378-7753. ; 97-98, s. 226-228.
  • Journal article (peer-reviewed)abstract
    • Two different SnO-based glasses, Sn2B3O6.5 and Sn2B2AlO6.5, have been examd. with FT-IR and Raman spectroscopy at different stages during the first electrochemical cycle. Some disruption of the connection between borate units in the network occurred during cycling. There was also an irreversible formation of Li3BO3 that can be related to the large capacity loss.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-50 of 6948
Type of publication
journal article (5417)
conference paper (510)
doctoral thesis (372)
research review (206)
other publication (193)
licentiate thesis (136)
show more...
book chapter (66)
reports (20)
patent (18)
book (6)
editorial collection (4)
artistic work (3)
show less...
Type of content
peer-reviewed (5892)
other academic/artistic (1029)
pop. science, debate, etc. (25)
Author/Editor
Younesi, Reza (136)
Brandell, Daniel, 19 ... (127)
Ahuja, Rajeev, 1965- (124)
Edström, Kristina, P ... (110)
Jannasch, Patric (105)
Edström, Kristina (94)
show more...
Johansson, Patrik, 1 ... (83)
Skoglundh, Magnus, 1 ... (79)
Kessler, Vadim (78)
Primetzhofer, Daniel (76)
Sun, Licheng, 1962- (75)
Hagfeldt, Anders (64)
Seisenbaeva, Gulaim (62)
Mindemark, Jonas (61)
Liu, Johan, 1960 (60)
Müller, Christian, 1 ... (58)
Boschloo, Gerrit (56)
Hultman, Lars (55)
Rensmo, Håkan (55)
Matic, Aleksandar, 1 ... (55)
Carlsson, Per-Anders ... (54)
Brandell, Daniel (52)
Roth, Stephan V. (52)
Ågren, Hans (50)
Hahlin, Maria (50)
Rosén, Johanna (48)
Nyholm, Leif, 1961- (48)
Wang, Ergang, 1981 (46)
Wågberg, Thomas, 197 ... (44)
Muhammed, Mamoun (42)
Hryha, Eduard, 1980 (42)
Bergström, Lennart (41)
Kullgren, Jolla, 197 ... (39)
Shen, Zhijian (39)
Nyholm, Leif (39)
Lundgren, Edvin (38)
Liu, Xianjie (38)
Eklund, Per (38)
Nyborg, Lars, 1958 (38)
Broqvist, Peter (38)
Kloo, Lars (36)
Hedin, Niklas (36)
Tai, Cheuk-Wai (36)
Valvo, Mario (36)
Palisaitis, Justinas (35)
Greczynski, Grzegorz (35)
Grönbeck, Henrik, 19 ... (34)
Vomiero, Alberto (34)
Xiong, Shizhao, 1985 (34)
Svensson, Jan-Erik, ... (34)
show less...
University
Uppsala University (2080)
Chalmers University of Technology (1817)
Royal Institute of Technology (1221)
Linköping University (842)
Lund University (642)
Stockholm University (577)
show more...
Umeå University (277)
RISE (237)
Luleå University of Technology (225)
Swedish University of Agricultural Sciences (158)
University of Gothenburg (146)
University of Borås (73)
Karlstad University (65)
Linnaeus University (59)
Mid Sweden University (52)
Karolinska Institutet (44)
Malmö University (31)
Örebro University (13)
Halmstad University (12)
University West (10)
Mälardalen University (8)
Jönköping University (7)
University of Gävle (5)
Högskolan Dalarna (5)
University of Skövde (4)
Swedish National Heritage Board (2)
Swedish Museum of Natural History (2)
VTI - The Swedish National Road and Transport Research Institute (2)
The Swedish School of Sport and Health Sciences (1)
Blekinge Institute of Technology (1)
IVL Swedish Environmental Research Institute (1)
show less...
Language
English (6923)
Swedish (15)
Chinese (2)
German (1)
French (1)
Russian (1)
show more...
Norwegian (1)
Italian (1)
Finnish (1)
Japanese (1)
Korean (1)
show less...
Research subject (UKÄ/SCB)
Natural sciences (6948)
Engineering and Technology (1997)
Medical and Health Sciences (97)
Agricultural Sciences (44)
Humanities (13)
Social Sciences (8)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view