SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "AMNE:(TEKNIK OCH TEKNOLOGIER Maskinteknik Energiteknik) "

Sökning: AMNE:(TEKNIK OCH TEKNOLOGIER Maskinteknik Energiteknik)

  • Resultat 1-50 av 12449
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Okda, Sherif, et al. (författare)
  • Testing of the Aerodynamic Characteristics of an Inflatable Airfoil Section
  • 2020
  • Ingår i: Journal of Aerospace Engineering. - 1943-5525 .- 0893-1321. ; 33:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Inflatable structures are characterized by being light and easy to manufacture and deploy. Hence, they find many applications in aerospace and aeronautical engineering. In this paper, an inflatable segment with a The National Advisory Committee for Aeronautics (NACA) 0021 airfoil cross-section is designed, fabricated, and tested. The geometrical accuracy of the manufactured inflatable segment is measured using laser scanning. Measurements show that the average normalized error of the chord length and thickness are 2.97% and 0.554%, respectively. The aerodynamic behavior of the inflatable segment is then tested in a wind tunnel at different wind speeds and angles of attack. Lift forces are measured using a six-component balance, while the drag forces are calculated from the wake measurements. The lift and drag coefficients of the inflatable section are compared to those of a standard NACA 0021 airfoil. Finally, flow visualization is examined at different angles of attack using two methods: smoke and tufts. Both methods show that flow separation starts at 15° and full stall occurs at 25°. Results indicate that inflatables can find more applications in the design and construction of aerodynamic structures, such as wings.
  •  
3.
  • Binder, Christian, 1988-, et al. (författare)
  • Phosphor Thermometry for In-Cylinder Surface Temperature Measurements in Diesel Engines
  • 2019
  • Ingår i: Measurement science and technology. - 0957-0233 .- 1361-6501.
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Surface temperature measurements in technically relevant applications can be very  hallenging and yet of great importance. Phosphor thermometry is a temperature measurement technique that has previously been employed in technically relevant applications to obtain surface temperature. The technique is based on temperature-dependent changes in a phosphor’s luminescence. To improve the accuracy and precision of temperature measurements with this technique, the present study considers, by way of example, the impact of conditions inside the cylinder of a diesel engine on decay time based phosphor thermometry. After an initial, general assessment of the effect of prevailing measurement conditions, this research investigates errors caused by soot luminosity, extinction, signal trapping and changes of phosphors’ luminescence properties due to exposure to the harsh environment. Furthermore, preferable properties of phosphors which are suitable for in-cylinder temperature measurements are discussed. 16 phosphors are evaluated, including four which – to the authors’ knowledge –have previously not been used in thermometry. Results indicate that errors due to photocathode bleaching, extinction, signal trapping and changes of luminescence properties may cause an erroneous temperature evaluation with temperature errors in the order of serval tens of Kelvin.
  •  
4.
  • Wadekar, Sandip, 1989 (författare)
  • Large-Eddy Simulation of Gasoline Fuel Spray Injection at Ultra-High Injection Pressures
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Gasoline direct injection is a state-of-the-art technique that reduces hydrocarbon and particulate emissions. However, further improvement is needed to meet current as well as future emission regulations. A prominent solution is to increase the fuel injection pressure which allows faster fuel droplet atomization, quick evaporation and improves fuel-air mixture formation under realistic engine conditions. In this work, the gasoline fuel injection process at ultra-high injection pressures ranging from 200 to 1500 bar was analyzed using numerical models. In particular, the Large-Eddy Simulation (LES) method, with the standard Smagorinsky turbulence model, was utilized using the Eulerian formulation  for the continuous phase. The discrete droplet phase was treated using a Lagrangian formulation together with spray sub-models. In the first part of study, spray was injected into an initially quiescent constant volume chamber using two different nozzle hole shape geometries: divergent and convergent. The numerical results were calibrated by reproducing experimentally observed liquid penetration length and efforts were made to understand the influence of ultra-high injection pressures on spray development. The calibrated models were then used to investigate the impact of ultra-high injection pressures on mean droplet sizes, droplet size distribution, spray-induced large-scale eddies and entrainment rate. The results showed that, at ultra-high injection pressures, the mean droplet sizes were significantly reduced and the droplets achieving very high  velocities. Integral length scales of spray-induced turbulence and air entrainment rate were better for the divergent-shaped injector, and considerably larger at higher injection pressures compared to lower ones. In the second part of the study, four consecutive full-cycle cold flow LES simulations were carried out to generate realistic turbulence inside the engine cylinder. The first three cycles were ignored, with the fourth cycle being used to model the injection of the fuel using the divergent-shaped injector only (which was found to be better in the previous part of this study) at different injection pressures. In addition to the continuous gas phase (Eulerian) and the dispersed liquid (Lagrangian), the liquid film feature (Finite-Area) was used to model the impingement of fuel spray on the engine walls and subsequent liquid film formation. The simulation results were used to evaluate spray-induced turbulence, fuel-air mixing efficiency and the amount of liquid mass deposited on the walls. The limitation of the high-pressure injection technique with respect to liquid film formation was optimized using a start of injection (SOI) sweep. Overall results showed that the mixing efficiency increased at high injection pressure and that SOI should occur between early injection and late injection to optimize the amount of mass being deposited on the engine walls.
  •  
5.
  • Lejon, Marcus, 1986, et al. (författare)
  • Multidisciplinary Design of a Three Stage High Speed Booster
  • 2017
  • Ingår i: ASME Turbo Expo 2017: Turbine Technical Conference and Exposition. - : ASME Press. ; 2B-2017
  • Konferensbidrag (refereegranskat)abstract
    • The paper describes a multidisciplinary conceptual design of an axial compressor, targeting a three stage, high speed, high efficiency booster with a design pressure ratio of 2.8. The paper is outlined in a step wise manner starting from basic aircraft and engine thrust requirements, establishing the definition of the high speed booster interface points and its location in the engine. Thereafter, the aerodynamic 1D/2D design is carried out using the commercial throughflow tool SC90C. A number of design aspects are described, and the steps necessary to arrive at the final design are outlined. The SC90C based design is then carried over to a CFD based conceptual design tool AxCent, in which a first profiling is carried out based on a multiple circular arc blade definition. The design obtained at this point is referred to as the VINK compressor. The first stage of the compressor is then optimized using an in-house optimization tool, where the objective functions are evaluated from detailed CFD calculations. The design is improved in terms of efficiency and in terms of meeting the design criteria put on the stage in the earlier design phases. Finally, some aeromechanical design aspects of the first stage are considered. The geometry and inlet boundary conditions of the compressor are shared with the turbomachinery community on a public server. This is intended to be used as a test case for further optimization and analysis.
  •  
6.
  •  
7.
  • Etikyala, Sreelekha, 1991 (författare)
  • Particulate Formation in GDI Engines
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The need to comply with stringent emission regulations while improving fuel economy and reducing criteria pollutant emissions from transportation presents a major challenge in the design of gasoline Direct Injection (DI) engines because of the adverse effects of ultrafine Particulate Number (PN) emissions on human health and other environmental concerns. With upcoming advances in vehicle electrification, it may be the case that electric vehicles completely replace all current vehicles powered by internal combustion engines ensuring zero emissions. In the meantime, Gasoline Direct Injection (GDI) engines have become the primary mode of transportation using gasoline as they offer better fuel economy while also providing low CO2 emissions. However, GDI engines tend to produce relatively high PN emissions when compared to conventional Port Fuel Injection (PFI) engines, largely because of challenges associated with in-cylinder liquid fuel injection. Cold-starts, transients, and high load operation generate a disproportionate share of PN emissions from GDI engines over a certification cycle. The mechanisms of PN formation during these stages must therefore be understood to identify solutions that reduce overall PN emissions in order to comply with increasingly strict emissions standards. This work presents experimental studies on particulate emissions from a naturally aspirated single cylinder metal gasoline engine run in a homogeneous configuration. The engine was adapted to enable operation in both DI and PFI modes. In PFI mode, injection was performed through a custom inlet manifold about 50 cm from the cylinder head to maximize the homogeneity of the fuel-air mixture. The metal head was eventually modified by incorporating an endoscope that made it possible to visualize the combustion process inside the cylinder. The experimental campaigns were structured to systematically isolate and clarify PN formation mechanisms. Tests were initially performed in steady state mode to obtain preliminary insights and to screen operating conditions before conducting transient tests. Particulate emissions were measured and correlated with the images obtained through endoscope visualization where possible. Key objectives of these studies were to find ways of reducing PN formation by increasing combustion stability. It was found that by avoiding conditions that cause wall wetting with liquid fuel, PN emissions can be substantially reduced during both steady state operation and transients. Warming the coolant and injecting fuel at later timings reduced PN emissions during warmup and cold transient conditions. Additionally, experiments using fuel blends with different oxygenate contents showed that the chemical composition of the fuel strongly influences particulate formation under steady state and transient conditions, and that this effect is load-dependent. Overall, the results obtained in this work indicate that wall wetting is the dominant cause of particulate formation inside the cylinder and that fuel-wall interactions involving the piston, cylinder walls, and valves during fuel injection account for a significant proportion of PN emissions in the engine raw exhaust.
  •  
8.
  • Li, Xiaojian, 1991, et al. (författare)
  • Installation effects on engine design
  • 2020
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Increasing the engine bypass ratio is one way to improve propulsive efficiency. However, an increase in the bypass ratio (BPR) has usually been associated with an increase in the fan diameter. Consequently, there can be a notable increase in the impact of the engine installation on the overall aircraft performance. In order to achieve a better balance between those factors, it requires novel nacelle and engine design concepts. This report mainly reviews installation effects on engine design. Firstly, the installation effects assessment methods are introduced. Then, the installation effects on engine cycle design, intake design and exhaust design are sequentially reviewed.
  •  
9.
  • Tillig, Fabian, 1984, et al. (författare)
  • Design, operation and analysis of wind-assisted cargo ships
  • 2020
  • Ingår i: Ocean Engineering. - : Elsevier BV. - 0029-8018. ; 211:1, s. 1-23
  • Tidskriftsartikel (refereegranskat)abstract
    • This study presents a novel approach to analytically capture aero- and hydrodynamic interaction effects on wind-assisted ships. Low aspect ratio wing theory is applied and modified to be used for the prediction of lift and drag forces of hulls sailing at drift angles. Aerodynamic interaction effects are captured by analytically solving the Navier-Stokes equation for incompressible, potential flow. The developed methods are implemented to a 4 degrees-of-freedom performance prediction model called “ShipCLEAN”, including a newly developed method for rpm control of Flettner rotors on a ship to maximize fuel savings. The accuracy of the model is proven by model- and full-scale verification. To present the variability of the model, two case study ships, a tanker and a RoRo, are equipped with a total of 11 different arrangements of Flettner rotors. The fuel savings and payback times are assessed using realistic weather from ships traveling on a Pacific Ocean route (tanker) and Baltic Sea route (RoRo). The results verify the importance of using a 4 degrees-of-freedom ship performance model, aero- and hydrodynamic interaction and the importance of controlling the rpm of each rotor individually. Fuel savings of 30% are achieved for the tanker, and 14% are achieved for the RoRo.
  •  
10.
  • Kyprianidis, Konstantinos, 1984, et al. (författare)
  • Multidisciplinary Analysis of a Geared Fan Intercooled Core Aero-Engine
  • 2014
  • Ingår i: Journal of Engineering for Gas Turbines and Power. - : ASME International. - 1528-8919 .- 0742-4795. ; 136:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The reduction of CO2 emissions is strongly linked with the improvement of engine specific fuel consumption, along with the reduction of engine nacelle drag and weight. One alternative design approach to improving specific fuel consumption is to consider a geared fan combined with an increased overall pressure ratio intercooled core performance cycle. The thermal benefits from intercooling have been well documented in the literature. Nevertheless, there is very little information available in the public domain with respect to design space exploration of such an engine concept when combined with a geared fan. The present work uses a multidisciplinary conceptual design tool to analyze the option of an intercooled core geared fan aero engine for long haul applications with a 2020 entry into service technology level assumption. With minimum mission fuel in mind, the results indicate as optimal values a pressure ratio split exponent of 0.38 and an intercooler mass flow ratio of 1.18 at hot-day top of climb conditions. At ISA midcruise conditions a specific thrust of 86 m/s, a jet velocity ratio of 0.83, an intercooler effectiveness of 56%, and an overall pressure ratio value of 76 are likely to be a good choice. A 70,000 lbf intercooled turbofan engine is large enough to make efficient use of an all-axial compression system, particularly within a geared fan configuration, but intercooling is perhaps more likely to be applied to even larger engines. The proposed optimal jet velocity ratio is actually higher than the value one would expect by using standard analytical expressions, primarily because this design variable affects core efficiency at midcruise due to a combination of several different subtle changes to the core cycle and core component efficiencies at this condition. The analytical expressions do not consider changes in core efficiency and the beneficial effect of intercooling on transfer efficiency, nor do they account for losses in the bypass duct and jet pipe, while a relatively detailed engine performance model, such as the one utilized in this study, does. Mission fuel results from a surrogate model are in good agreement with the results obtained from a rubberized-wing aircraft model for some of the design parameters. This indicates that it is possible to replace an aircraft model with specific fuel consumption and weight penalty exchange rates. Nevertheless, drag count exchange rates have to be utilized to properly assess changes in mission fuel for those design parameters that affect nacelle diameter.
  •  
11.
  • Thulin, Oskar, 1987, et al. (författare)
  • First and Second Law Analysis of Radical Intercooling Concepts
  • 2018
  • Ingår i: Journal of Engineering for Gas Turbines and Power. - : ASME International. - 1528-8919 .- 0742-4795. ; 140:8, s. 081201-081201-10
  • Tidskriftsartikel (refereegranskat)abstract
    • An exergy framework was developed taking into consideration a detailed analysis of the heat exchanger (HEX) (intercooler (IC)) component irreversibilities. Moreover, it was further extended to include an adequate formulation for closed systems, e.g., a secondary cycle (SC), moving with the aircraft. Afterward, the proposed framework was employed to study two radical intercooling concepts. The first proposed concept uses already available wetted surfaces, i.e., nacelle surfaces, to reject the core heat and contributes to an overall drag reduction. The second concept uses the rejected core heat to power a secondary organic Rankine cycle and produces useful power to the aircraft-engine system. Both radical concepts are integrated into a high bypass ratio (BPR) turbofan engine, with technology levels assumed to be available by year 2025. A reference intercooled cycle incorporating a HEX in the bypass (BP) duct is established for comparison. Results indicate that the radical intercooling concepts studied in this paper show similar performance levels to the reference cycle. This is mainly due to higher irreversibility rates created during the heat exchange process. A detailed assessment of the irreversibility contributors, including the considered HEXs and SC, is made. A striking strength of the present analysis is the assessment of the component-level irreversibility rate and its contribution to the overall aero-engine losses.
  •  
12.
  • Thulin, Oskar, 1987 (författare)
  • On the Analysis of Energy Efficient Aircraft Engines
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Aero engine performance analysis is highly multidimensional using various measures of component performance such as turbomachinery and mechanical efficiencies, and pressure loss coefficients. Using conventional performance analysis, relying on only the laws of thermodynamics, it is possible to understand how the performance parameters affect the component performance, but it is difficult to directly compare the magnitude of various loss sources. A comprehensive framework has been detailed to analyze aero engine loss sources in one common currency. As the common currency yields a measure of the lost work potential in every component, it is used to relate the component performance to the system performance. The theory includes a more detailed layout of all the terms that apply to a propulsion unit than presented before. The framework is here adopted to real gases to be used in state of the art performance codes. Additionally, the framework is further developed to enable detailed studies of two radical intercooling concepts that either rejects the core heat in the outer nacelle surfaces or uses the core heat for powering of a secondary cycle. The theory is also extended upon by presenting the installed rational efficiency, a true measure of the propulsion subsystem performance, including the installation effects of the propulsion subsystem as it adds weight and drag that needs to be compensated for in the performance assessment.
  •  
13.
  • Ström, Henrik, 1981, et al. (författare)
  • Behaviour and stability of the two-fluid model for fine-scale simulations of bubbly flow in nuclear reactors
  • 2015
  • Ingår i: International Journal of Chemical Reactor Engineering. - : Walter de Gruyter GmbH. - 1542-6580 .- 2194-5748. ; 13:4, s. 449-459
  • Tidskriftsartikel (refereegranskat)abstract
    • In the present work, we formulate a simplistic two-fluid model for bubbly steam-water flow existing between fuel pins in nuclear fuel assemblies. Numerical simulations are performed in periodic 2D domains of varying sizes. The appearance of a non-uniform volume fraction field in the form of meso-scales is investigated and shown to be varying with the bubble loading and the domain size, as well as with the numerical algorithm employed. These findings highlight the difficulties involved in interpreting the occurrence of instabilities in two-fluid simulations of gas-liquid flows, where physical and unphysical instabilities are prone to be confounded. The results obtained in this work therefore contribute to a rigorous foundation in on-going efforts to derive a consistent meso-scale formulation of the traditional two-fluid model for multiphase flows in nuclear reactors.
  •  
14.
  • El-Gabry, Lamyaa, et al. (författare)
  • Measurements of Hub Flow Interaction on Film Cooled Nozzle Guide Vane in Transonic Annular Cascade
  • 2015
  • Ingår i: Journal of turbomachinery. - : ASME International. - 0889-504X .- 1528-8900. ; 137:8
  • Tidskriftsartikel (refereegranskat)abstract
    • An experimental study has been performed in a transonic annular sector cascade of nozzle guide vanes (NGVs) to investigate the aerodynamic performance and the interaction between hub film cooling and mainstream flow. The focus of the study is on the endwalls, specifically the interaction between the hub film cooling and the mainstream. Carbon dioxide (CO2) has been supplied to the coolant holes to serve as tracer gas. Measurements of CO2 concentration downstream of the vane trailing edge (TE) can be used to visualize the mixing of the coolant flow with the mainstream. Flow field measurements are performed in the downstream plane with a five-hole probe to characterize the aerodynamics in the vane. Results are presented for the fully cooled and partially cooled vane (only hub cooling) configurations. Data presented at the downstream plane include concentration contour, axial vorticity, velocity vectors, and yaw and pitch angles. From these investigations, secondary flow structures such as the horseshoe vortex, passage vortex, can be identified and show the cooling flow significantly impacts the secondary flow and downstream flow field. The results suggest that there is a region on the pressure side (PS) of the vane TE where the coolant concentrations are very low suggesting that the cooling air introduced at the platform upstream of the leading edge (LE) does not reach the PS endwall, potentially creating a local hotspot.
  •  
15.
  • Saha, Ranjan, 1984-, et al. (författare)
  • Aerodynamic Investigation of External Cooling and Applicability of Superposition
  • 2015
  • Ingår i: 11th EUROPEAN CONFERENCE ON TURBOMACHINERY FLUID DYNAMICS AND THERMODYNAMICS. - : EUROPEAN TURBOMACHINERY SOC-EUROTURBO.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • An experimental investigation of the overall external cooling on a cooled nozzle guide vanehas been conducted in a transonic annular sector cascade. The investigated vane is a typicaltransonic high pressure gas turbine vane, geometrically similar to a real engine component.The investigations are performed for various coolant-to-mainstream mass-flux ratios. Resultsindicate that the aerodynamic loss is influenced substantially with the change of the coolingflow. Area-averaged exit flow angles in midspan region are unaffected at moderate filmcoolant flows, for all cooling configurations except for trailing edge cooling. The trailing edgecooling decreases the turning in all investigated cases. Results lead to a conclusion that bothtrailing edge and suction side cooling have significant influence on the aerodynamic losswhereas the shower head cooling is less sensitive to the loss. Investigations with individualcooling features essentially lead to the applicability of the superposition technique regardingthe aerodynamic loss for film cooled vanes, which is this paper’s contribution to the researchfield. Results show that the superposition technique can be used for the profile loss but not forthe secondary loss.
  •  
16.
  • Saha, Ranjan, 1984- (författare)
  • Aerodynamic Investigation of Leading Edge Contouring and External Cooling on a Transonic Turbine Vane
  • 2014
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Efficiency improvement in turbomachines is an important aspect in reducing the use of fossil-based fuel and thereby reducing carbon dioxide emissions in order to achieve a sustainable future. Gas turbines are mainly fossil-based turbomachines powering aviation and land-based power plants. In line with the present situation and the vision for the future, gas turbine engines will retain their central importance in coming decades. Though the world has made significant advancements in gas turbine technology development over past few decades, there are yet many design features remaining unexplored or worth further improvement. These features might have a great potential to increase efficiency. The high pressure turbine (HPT) stage is one of the most important elements of the engine where the increased efficiency has a significant influence on the overall efficiency as downstream losses are substantially affected by the prehistory. The overall objective of the thesis is to contribute to the development of gas turbine efficiency improvements in relation to the HPT stage. Hence, this study has been incorporated into a research project that investigates leading edge contouring near endwall by fillet and external cooling on a nozzle guide vane with a common goal to contribute to the development of the HPT stage. In the search for HPT stage efficiency gains, leading edge contouring near the endwall is one of the methods found in the published literature that showed a potential to increase the efficiency by decreasing the amount of secondary losses. However, more attention is necessary regarding the realistic use of the leading edge fillet. On the other hand, external cooling has a significant influence on the HPT stage efficiency and more attention is needed regarding the aerodynamic implication of the external cooling. Therefore, the aerodynamic influence of a leading edge fillet and external cooling, here film cooling at profile and endwall as well as TE cooling, on losses and flow field have been investigated in the present work. The keystone of this research project has been an experimental investigation of a modern nozzle guide vane using a transonic annular sector cascade. Detailed investigations of the annular sector cascade have been presented using a geometric replica of a three dimensional gas turbine nozzle guide vane. Results from this investigation have led to a number of new important findings and also confirmed some conclusions established in previous investigations to enhance the understanding of complex turbine flows and associated losses. The experimental investigations of the leading edge contouring by fillet indicate a unique outcome which is that the leading edge fillet has no significant effect on the flow and secondary losses of the investigated nozzle guide vane. The reason why the leading edge fillet does not affect the losses is due to the use of a three-dimensional vane with an existing typical fillet over the full hub and tip profile. Findings also reveal that the complex secondary flow depends heavily on the incoming boundary layer. The investigation of the external cooling indicates that a coolant discharge leads to an increase of profile losses compared to the uncooled case. Discharges on the profile suction side and through the trailing edge slot are most prone to the increase in profile losses. Results also reveal that individual film cooling rows have a weak mutual effect. A superposition principle of these influences is followed in the midspan region. An important finding is that the discharge through the trailing edge leads to an increase in the exit flow angle in line with an increase of losses and a mixture mass flow. Results also indicate that secondary losses can be reduced by the influence of the coolant discharge. In general, the exit flow angle increases considerably in the secondary flow zone compared to the midspan zone in all cases. Regarding the cooling influence, the distinct change in exit flow angle in the area of secondary flows is not noticeable at any cooling configuration compared to the uncooled case. This interesting zone requires an additional, accurate study. The investigation of a cooled vane, using a tracer gas carbon dioxide (CO2), reveals that the upstream platform film coolant is concentrated along the suction surfaces and does not reach the pressure side of the hub surface, leaving it less protected from the hot gas. This indicates a strong interaction of the secondary flow and cooling showing that the influence of the secondary flow cannot be easily influenced. The overall outcome enhances the understanding of complex turbine flows, loss behaviour of cooled blade, secondary flow and interaction of cooling and secondary flow and provides recommendations to the turbine designers regarding the leading edge contouring and external cooling. Additionally, this study has provided to a number of new significant results and a vast amount of data, especially on profile and secondary losses and exit flow angles, which are believed to be helpful for the gas turbine community and for the validation of analytical and numerical calculations.
  •  
17.
  • Saha, Ranjan, 1984-, et al. (författare)
  • Shower Head and Trailing Edge Cooling Influence on Transonic Vane Aero Performance
  • 2014
  • Ingår i: ASME Turbo Expo 2014. - : ASME Press. - 9780791845622
  • Konferensbidrag (refereegranskat)abstract
    • An experimental investigation on a cooled nozzle guide vane has been conducted in an annular sector to quantify aerodynamic influences of shower head and trailing edge cooling. The investigated vane is a typical high pressure gas turbine vane, geometrically similar to a real engine component, operated at a reference exit Mach number of 0.89. The investigations have been performed for various coolant-to-mainstream mass-flux ratios. New loss equations are derived and implemented regarding coolant aerodynamic losses. Results lead to a conclusion that both trailing edge cooling and shower head film cooling increase the aerodynamic loss compared to an uncooled case. In addition, the trailing edge cooling has higher aerodynamic loss compared to the shower head cooling. Secondary losses decrease with inserting shower head film cooling compared to the uncooled case. The trailing edge cooling appears to have less impact on the secondary loss compared to the shower head cooling. Area-averaged exit flow angles around midspan increase for the trailing edge cooling.
  •  
18.
  • Saha, Ranjan, 1984-, et al. (författare)
  • Shower Head and Trailing Edge Cooling Influence on Transonic Vane Aero Performance
  • 2014
  • Ingår i: Journal of turbomachinery. - : ASME Press. - 0889-504X .- 1528-8900. ; 136:11, s. 111001-
  • Tidskriftsartikel (refereegranskat)abstract
    • An experimental investigation on a cooled nozzle guide vane (NGV) has been conducted in an annular sector to quantify aerodynamic influences of shower head (SH) and trailing edge (TE) cooling. The investigated vane is a typical high pressure gas turbine vane, geometrically similar to a real engine component, operated at a reference exit Mach number of 0.89. The investigations have been performed for various coolant-to-mainstream mass-flux ratios. New loss equations are derived and implemented regarding coolant aerodynamic losses. Results lead to a conclusion that both TE cooling and SH film cooling increase the aerodynamic loss compared to an uncooled case. In addition, the TE cooling has higher aerodynamic loss compared to the SH cooling. Secondary losses decrease with inserting SH film cooling compared to the uncooled case. The TE cooling appears to have less impact on the secondary loss compared to the SH cooling. Area-averaged exit flow angles around midspan increase for the TE cooling.
  •  
19.
  • Svanberg, Martin, 1982, et al. (författare)
  • Analyzing animal waste-to-energy supply chains: The case of horse manure
  • 2018
  • Ingår i: Renewable Energy. - : Elsevier BV. - 0960-1481 .- 1879-0682. ; 129, s. 830-837
  • Tidskriftsartikel (refereegranskat)abstract
    • To reduce human impact upon the environment, a transition from fossil to renewable energy sources such as biomass is imperative. Biomass from animal waste such as horse manure has unutilized potential as it has yet to be implemented at a large scale as an energy source. Research has demonstrated the technical feasibility of using animal waste for energy conversion, though their supply chain cost poses a barrier, as does a gap in research regarding the specific design of efficient horse manure-to-energy supply chains. In response, we investigated the design of horse manure-to-energy supply chains through interviews and site visits at stables, as well as through interviews with transport companies. Our findings show that horse manure-to-energy supply chains have distinct attributes at all stages of the supply chain such as the geographical spread of stables that determines supply chain design and hampers efficiency. They share several such attributes with forest biomass-to-energy supply chains, from which important needs can be identified, including the industrial development of trucks dedicated to the purpose, mathematical modeling to handle the trade-off of cost of substance loss in storage and cost of transport, and business models that reconcile the conflicting goals of different actors along the supply chains. (C) 2017 Elsevier Ltd. All rights reserved.
  •  
20.
  • Dahlqvist, Johan (författare)
  • Cavity Purge Flows in High Pressure Turbines
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Turbomachinery forms the principal prime mover in the energy and aviation industries. Due to its size, improvements to this fleet of machines have the potential of significant impact on global emissions. Due to high gas temperatures in stationary gas turbines and jet engines, areas of flow mixing and cooling are identified to benefit from continued research. Here, sensitive areas are cooled through cold air injection, but with the cost of power to compress the coolant to appropriate pressure. Further, the injection itself reduces output due to mixing losses.A turbine testing facility is center to the study, allowing measurement of cooling impact on a rotating low degree of reaction high pressure axial turbine. General performance, flow details, and cooling performance is quantified by output torque, pneumatic probes, and gas concentration measurement respectively. The methodology of simultaneously investigating the beneficial cooling and the detrimental mixing is aimed at the cavity purge flow, used to purge the wheelspace upstream of the rotor from hot main flow gas.Results show the tradeoff between turbine efficiency and cooling performance, with an efficiency penalty of 1.2 %-points for each percentage point of massflow ratio of purge. The simultaneous cooling effectiveness increase is about 40 %-points, and local impact on flow parameters downstream of the rotor is of the order of 2° altered turning and a Mach number delta of 0.01. It has also been showed that flow bypassing the rotor blading may be beneficial for cooling downstream.The results may be used to design turbines with less cooling. Detrimental effects of the remaining cooling may be minimized with the flow field knowledge. Stage performance is then optimized aerodynamically, mixing losses are reduced, and the cycle output is maximized due to the reduced compression work. The combination may be used to provide a significant benefit to the turbomachinery industry and reduced associated emissions.
  •  
21.
  • Dahlqvist, Johan, 1987-, et al. (författare)
  • TEST TURBINE INSTRUMENTATION FOR CAVITY PURGE INVESTIGATIONS
  • 2014
  • Ingår i: The XXII Symposium on Measuring Techniques in Turbomachinery, Lyon, 4-5 September 2014.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • The upstream wheelspace of the KTH Test Turbine has been instrumented with the aim of investigating cavity flow phenomena, as well as cavity-main annulus interaction. Measurements include static pressure, unsteady pressure and temperature.The stage used is of high pressure steam turbine design. The trials include investigating the design point and also a high pressure, high speed operating point, assimilating gas turbine operation. At each point, varying amounts of purge flow are superposed and the influences on the measurements studied.Initial results show considerable dependence of both operating
  •  
22.
  • Johansson, Anders, 1985, et al. (författare)
  • Experimental Investigation of the Influence of Boost on Combustion and Particulate Emissions in Optical and Metal SGDI-Engines Operated in Stratified Mode
  • 2016
  • Ingår i: SAE International Journal of Engines. - : SAE International. - 1946-3944 .- 1946-3936. ; 9:2, s. 807-818
  • Tidskriftsartikel (refereegranskat)abstract
    • Boosting and stratified operation can be used to increase the fuel efficiency of modern gasoline direct-injected (GDI) engines. In modern downsized GDI engines, boosting is standard to achieve a high power output. However, boosted GDI-engines have mostly been operated in homogenous mode and little is known about the effects of operating a boosted GDI-engine in stratified mode.This study employed optical and metal engines to examine how boosting influences combustion and particulate emission formation in a spray-guided GDI (SGDI), single cylinder research engine. The setup of the optical and metal engines was identical except the optical engine allowed optical access through the piston and cylinder liner.The engines were operated in steady state mode at five different engine operating points representing various loads and speeds. The engines were boosted with compressed air and operated at three levels of boost, as well as atmospheric pressure for comparison. The fuel used was market gasoline (95 RON) blended with 10% ethanol. The spark plug and injector were mounted in parallel with the intake valves. The gas motion induced by the engine head was primarily tumble motion with a small amount of swirl.Results on particulate emissions indicated that nucleation mode particulates increased with increasing boost. In contrast, agglomeration mode particulates decreased with increasing boost pressure. The combustion was found to consist of a yellow flame in the center of the combustion chamber and a pre-mixed blue flame in the perimeter. The optical studies indicated that the flame area decreased with increasing boost.
  •  
23.
  • Papafilippou, Nikolaos, et al. (författare)
  • LES of Biomass Syngas Combustion in a Swirl Stabilised Burner: Model Validation and Predictions
  • 2024
  • Ingår i: Flow Turbulence and Combustion. - : Springer Nature. - 1386-6184 .- 1573-1987.
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, numerical investigations were performed using large eddy simulations and validated against detailed measurements in the CeCOST swirl stabilised burner. Both cold and reactive flow have been studied and the model has shown a good agreement with experiments. The verification of the model was done using the LES index of quality and a single grid estimator. The cold flow simulations predicted results closely to experiments setting baseline for the reactive simulations. Coherent structures like the vortex rope above the swirler and a precessing vortex core in the combustion chamber were identified. The reactive conditions were modelled with the Flamelet generated manifold and artificially thickened flame models. Simulations were performed for an experimental syngas composition from black liquor gasification at three different CO2 dilution levels. Three different Reynolds numbers were investigated with the model matching closely to experimentally detected 2D flow field and OH for the most CO2 diluted mixture. It was found that the opening angles of the flames differ by a maximum of 13% between experiments and simulations. The most diluted fuel investigated experienced a liftoff distance of 23.5 mm at the Re 25 k. This was also the highest liftoff distance experienced in this cohort of fuels. The same fuel also proved to have the thickest flame annulus at 78.5 mm. Overall, in cases with no experimental data available the predictions made by the model follow the same trends which hints its applicability to higher Re cases.
  •  
24.
  • Jeong, Seung Hee, 1978- (författare)
  • Soft Intelligence : Liquids Matter in Compliant Microsystems
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Soft matter, here, liquids and polymers, have adaptability to a surrounding geometry. They intrinsically have advantageous characteristics from a mechanical perspective, such as flowing and wetting on surrounding surfaces, giving compliant, conformal and deformable behavior. From the behavior of soft matter for heterogeneous surfaces, compliant structures can be engineered as embedded liquid microstructures or patterned liquid microsystems for emerging compliant microsystems.Recently, skin electronics and soft robotics have been initiated as potential applications that can provide soft interfaces and interactions for a human-machine interface. To meet the design parameters, developing soft material engineering aimed at tuning material properties and smart processing techniques proper to them are to be highly encouraged. As promising candidates, Ga-based liquid alloys and silicone-based elastomers have been widely applied to proof-of-concept compliant structures.In this thesis, the liquid alloy was employed as a soft and stretchable electrical and thermal conductor (resistor), interconnect and filler in an elastomer structure. Printing-based liquid alloy patterning techniques have been developed with a batch-type, parallel processing scheme. As a simple solution, tape transfer masking was combined with a liquid alloy spraying technique, which provides robust processability. Silicone elastomers could be tunable for multi-functional building blocks by liquid or liquid-like soft solid inclusions. The liquid alloy and a polymer additive were introduced to the silicone elastomer by a simple mixing process. Heterogeneous material microstructures in elastomer networks successfully changed mechanical, thermal and surface properties.To realize a compliant microsystem, these ideas have in practice been useful in designing and fabricating soft and stretchable systems. Many different designs of the microsystems have been fabricated with the developed techniques and materials, and successfully evaluated under dynamic conditions. The compliant microsystems work as basic components to build up a whole system with soft materials and a processing technology for our emerging society.
  •  
25.
  • Ottersten, Martin, 1981, et al. (författare)
  • Inlet Gap Influence on Low-Frequency Flow Unsteadiness in a Centrifugal Fan
  • 2022
  • Ingår i: Aerospace. - : MDPI AG. - 2226-4310. ; 9:12
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, unsteady low-frequency characteristics in a voluteless low-speed centrifugal fan operating at a high mass flow rate are studied with improved delayed detached eddy simulation (IDDES). This study is motivated by a recent finding that the non-uniformly distributed pressure inside this type of fan could be alleviated by improving the gap geometry. The present simulation results show that the velocity magnitudes of the gap have distinct low and high regions. Intensive turbulent structures are developed in the low-velocity regions and are swept downstream along the intersection between the blade and shroud, on the pressure side of the blade. Eventually, the turbulence gives rise to a high-pressure region near the blade’s trailing edge. This unsteady flow behavior revolves around the fan rotation axis. Additionally, its period is 5% of the fan rotation speed, based on the analysis of the time history of the gap velocity magnitudes and the evolution of the high-pressure region. The same frequency of high pressure was also found in previous experimental measurements. To the authors’ knowledge, this is the first time that the trigger of the gap turbulence, i.e., the unsteady local low velocity, has been determined.
  •  
26.
  • Hadadpour, Ahmad (författare)
  • Spray combustion with multiple-injection in modern engine conditions
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Combustion of fuel in diesel engines emits substances harmful to the environment such as soot. These emissions can be reduced by either in-cylinder treatments or after-treatments. One of the common in-cylinder treatments is multiple-injection, which divides a single fuel injection to multiple smaller injections. There are many open questions on the physical processes of the ignition, combustion and emissions of diesel spray flame with multiple injections. The current PhD project aims at studying these processes using large-eddy simulations (LES) and strives to answer some of the open questions. To develop a fast and robust LES tool for this study, a new method is formulated for spray combustion simulation. This method is developed based on the flamelet-generated manifold (FGM) method and the Eulerian stochastic fields (ESF) method. The new ESF/FGM method relaxes some of the substantial assumptions in conventional FGM, while it still keeps the computational costs at a reasonable level for engineering applications. Additionally in this work, a new reaction progress variable for FGM models is proposed by using local oxygen consumption, and the advantages and limitations of this progress variable are explored. Spray-A from Engine Combustion Network (ECN) which is designed to mimic modern engine conditions is chosen as the baseline case for simulations. In this case, liquid n-dodecane, which is a diesel surrogate, is injected into a high-pressure constant-volume vessel. The comparison of simulation results with experimental measurements shows that the ESF/FGM method with the new progress variable can predict the spray combustion characteristics such as ignition delay time, ignition location, lift-off length, pressure rise and thermochemical structure of the spray flame, accurately. After validation of simulation results against experimental measurements, the new ESF/FGM and other available turbulence-combustion simulation tools are applied to simulate multiple-injection spray combustion. Different multiple-injection strategies are investigated by systematically changing the injection timing. The effects of applying each strategy on the ignition, combustion, mixing and emissions are investigated. The results show that in split-injection and post-injection strategies the major physical reason for reduction of soot is better air entrainment and lower local equivalence ratio. It is shown that increasing the dwell time and retarding it toward the end of injection can enhance this effect. On the contrary, for the pre-injection strategies, shortening the ignition delay time of the main injection reduces its pre-mixing and increases its soot formation. In these strategies, the high-temperature region from the pre-injection combustion can increase soot oxidation of the main injection fuel, only if this region is not cooled down as a result of air entrainment during dwell time. Therefore, in such cases shortening the dwell time decreases net soot emissions.
  •  
27.
  • Li, Xiaojian, 1991, et al. (författare)
  • A New Method for Impeller Inlet Design of Supercritical CO2 Centrifugal Compressors in Brayton Cycles
  • 2020
  • Ingår i: Energies. - : MDPI AG. - 1996-1073 .- 1996-1073. ; 13:19
  • Tidskriftsartikel (refereegranskat)abstract
    • Supercritical Carbon Dioxide (SCO2) is considered as a potential working fluid in next generation power and energy systems. The SCO2 Brayton cycle is advantaged with higher cycle efficiency, smaller compression work, and more compact layout, as compared with traditional cycles. When the inlet total condition of the compressor approaches the critical point of the working fluid, the cycle efficiency is further enhanced. However, the flow acceleration near the impeller inducer causes the fluid to enter two-phase region, which may lead to additional aerodynamic losses and flow instability. In this study, a new impeller inlet design method is proposed to achieve a better balance among the cycle efficiency, compressor compactness, and inducer condensation. This approach couples a concept of the maximum swallowing capacity of real gas and a new principle for condensation design. Firstly, the mass flow function of real gas centrifugal compressors is analytically expressed by non-dimensional parameters. An optimal inlet flow angle is derived to achieve the maximum swallowing capacity under a certain inlet relative Mach number, which leads to the minimum energy loss and a more compact geometry for the compressor. Secondly, a new condensation design principle is developed by proposing a novel concept of the two-zone inlet total condition for SCO2 compressors. In this new principle, the acceptable acceleration margin (AAM) is derived as a criterion to limit the impeller inlet condensation. The present inlet design method is validated in the design and simulation of a low-flow-coefficient compressor stage based on the real gas model. The mechanisms of flow accelerations in the impeller inducer, which form low-pressure regions and further produce condensation, are analyzed and clarified under different operating conditions. It is found that the proposed method is efficient to limit the condensation in the impeller inducer, keep the compactness of the compressor, and maintain a high cycle efficiency.
  •  
28.
  • Yang, Shun-Han, 1987, et al. (författare)
  • Parametric study of the dynamic motions and mechanical characteristics of power cables for wave energy converters
  • 2018
  • Ingår i: Journal of Marine Science and Technology. - : Springer Science and Business Media LLC. - 0948-4280 .- 1437-8213. ; 23:1, s. 10-29
  • Tidskriftsartikel (refereegranskat)abstract
    • A case study of a point-absorber wave energy converter (WEC) system is presented. The WEC system forms an array, with several WECs located around a central hub to which they are each connected by a short, free-hanging power cable. The objective of the study is to analyse the dynamic characteristics and estimate the fatigue life of the power cable which is not yet in use or available on the commercial market. Hence, a novel approach is adopted in the study considering that the power cable’s length is restricted by several factors (e.g., the clearances between the service vessel and seabed and the cable), and the cable is subject to motion and loading from the WEC and to environmental loads from waves and currents (i.e., dynamic cable). The power cable’s characteristics are assessed using a numerical model subjected to a parametric analysis, in which the environmental parameters and the cable’s design parameters are varied. The results of the numerical simulations are compared and discussed regarding the responses of the power cables, including dynamic motion, curvature, cross-sectional forces, and accumulated fatigue damage. The effects of environmental conditions on the long-term mechanical life spans of the power cables are also investigated. Important cable design parameters that result in a long power cable (fatigue) service life are identified, and the cable service life is predicted. This study contributes a methodology for the first-principle design of WEC cables that enables the prediction of cable fatigue life by considering environmental conditions and variations in cable design parameters.
  •  
29.
  • Bollen, Math, et al. (författare)
  • Classification of Underlying Causes of Power Quality Disturbances: Deterministic versus Statistical Methods
  • 2007
  • Ingår i: Eurasip Journal on Applied Signal Processing. - : Springer Science and Business Media LLC. - 1110-8657 .- 1687-0433. ; 2007, s. 17 pages (Article ID 79747)-
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents the two main types of classification methods for power quality disturbances based on underlying causes: deterministic classification, giving an expert system as an example, and statistical classification, with support vector machines as an example. An expert system is suitable when one has limited amount of data and sufficient power system expert knowledge, however its application requires a set of threshold values. Statistical methods are suitable when large amount of data is available for training. Two important issues to guarantee the effectiveness of a classifier, data segmentation and featureextraction, are discussed. Segmentation of a sequence of data recording is pre-processing to partition the datainto segments each representing a duration containing either an event or transition between two events. Extraction of features is applied to each segment individually. Some useful features and their effectiveness are then discussed. Some experimental results are included for demonstrating theeffectiveness of both systems. Finally, conclusions are given together with the discussion of some future research directions.
  •  
30.
  •  
31.
  • Sarkar, Saptarshi, 1992, et al. (författare)
  • Transient torque reversals in indirect drive wind turblnes
  • 2023
  • Ingår i: Wind Energy. - 1099-1824 .- 1095-4244. ; 26, s. 691-716
  • Tidskriftsartikel (refereegranskat)abstract
    • The adverse effect of transient torque reversals (TTRs) оп wind turЬine gearboxes сап Ье severe due to their magnitude and rapid occurrence compared with other equipment. The primary damage is caused to the bearings as the bearing loaded zone rapidly changes its direction. Other components are also affected Ьу TTRs (such as gear tooth); however, its impact оп bearings is the largest. While the occurrence and severity of TTRs are acknowledged in the industry, there is а lack of academic litera­ture оп their initiation, propagation and the associated risk of damage. Furthermore, in the wide range of operation modes of а wind turЬine, it is not known which modes сап lead to TTRs. Further, the interdependence of TTRs оп environmental loading like the wind is also not reported. This paper aims to address these unknowns Ьу expanding оп the understanding of TTRs using а high-fidelity numerical model of an indirect drive wind turЬine with а douЬly fed induction generator (DFIG). То this end, а multibody model of the drivetrain is developed in SIMPACK. The model of the drivetrain is explicitly coupled to state-of-the-art wind turЬine simulator OpenFAST and а grid-connected DFIG developed in MATLAB®'s Simulink® allowing а coupled analysis of the electromechanical system. А metric termed slip risk duration is pro­posed in this paper to quantify the risk associated with the TTRs. The paper first investigates а wide range of IEC design load cases to uncover which load cases сап lead to TTRs. lt was found that emergency stops and symmetric grid voltage drops сап lead to TTRs. Next, the dependence of the TTRs оп inflow wind parameters is investigated using а sensitivity analysis. lt was found that the instantaneous wind speed at the onset of the grid fault or emergency shutdown was the most influential factor in the slip risk duration. The investigation enaЫes the designer to predict the occurrence of TTRs and quantify the associated risk of damage. The paper concludes with recommendations for utility-scale wind turЬines and directions for future research.
  •  
32.
  • Shahroozi, Zahra, 1992- (författare)
  • Survivability control using data-driven approaches and reliability analysis for wave energy converters
  • 2024
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Wave energy, with five times the energy density of wind and ten times the power density of solar, offers a compelling carbon-free electricity solution. Despite its advantages, ongoing debates surround the reliability and economic feasibility of wave energy converters (WECs). To address these challenges, this doctoral thesis is divided into four integral parts, focusing on optimizing the prediction horizon for power maximization, analyzing extreme waves' impact on system dynamics, ensuring reliability, and enhancing survivability in WECs.Part I emphasizes the critical importance of the prediction horizon for maximal power absorption in wave energy conversion. Using generic body shapes and modes, it explores the effect of dissipative losses, noise, filtering, amplitude constraints, and real-world wave parameters on the prediction horizon. Findings suggest achieving optimal power output may be possible with a relatively short prediction horizon, challenging traditional assumptions.Part II shifts focus to WEC system dynamics, analyzing extreme load scenarios. Based on a 1:30 scaled wave tank experiment, it establishes a robust experimental foundation, extending into numerical assessment of the WEC. Results underscore the importance of damping to alleviate peak forces. Investigating various wave representations highlights conservative characteristics of irregular waves, crucial for WEC design in extreme sea conditions.Part III explores the computational intricacies of environmental design load cases and fatigue analyses for critical mechanical components of the WEC. The analysis is conducted for hourly sea state damage and equivalent two-million-cycle loads. Finally, a comparison of safety factors between the ultimate limit state and fatigue limit state unfolds, illustrating the predominant influence of the ultimate limit state on point-absorber WEC design.Part IV, centers on elevating survivability strategies for WECs in extreme wave conditions. Three distinct controller system approaches leverage neural networks to predict and minimize the line force. Distinct variations emerge in each approach, spanning from rapid detection of optimal damping to integrating advanced neural network architectures into the control system with feedback. The incorporation of a controller system, refined through experimental data, showcases decreases in the line force, providing a practical mechanism for real-time force alleviation.This thesis aims to contribute uniquely to the goal of advancing wave energy conversion technology through extensive exploration.
  •  
33.
  • Binder, Christian, 1988-, et al. (författare)
  • Experimental Determination of the Heat Transfer Coefficient in Piston Cooling Galleries
  • 2018
  • Ingår i: SAE Technical Papers. - Heidelberg, Germanay : SAE International. - 0148-7191.
  • Tidskriftsartikel (refereegranskat)abstract
    • Piston cooling galleries are critical for the pistons’ capability to handle increasing power density while maintaining the same level of durability. However, piston cooling also accounts for a considerable amount of heat rejection and parasitic losses. Knowing the distribution of the heat transfer coefficient (HTC) inside the cooling gallery could enable new designs which ensure effective cooling of areas decisive for durability while minimizing parasitic losses and overall heat rejection. In this study, an inverse heat transfer method is presented to determine the spatial HTC distribution inside the cooling gallery based on surface temperature measurements with an infrared (IR) camera. The method utilizes a piston specially machined so it only has a thin sheet of material of a known thickness left between the cooling gallery and the piston bowl. The piston - initially at room temperature - is heated up with warm oil injected into the cooling gallery. The transient of the piston’s outer surface temperature is captured with an IR camera from the top. Combining the temperature transient of each pixel, the HTC is later obtained through an inverse heat transfer solver based on one-dimensional heat conduction inside the piston material. To the authors’ knowledge, the current study presents the first application of an inverse heat transfer method for spatially resolved and experimentally determined heat transfer coefficients inside a piston cooling gallery. Preliminary measurements at standstill to demonstrate the method display an area of increased heat transfer where the entering oil jet impinges onto the wall of the cooling gallery.
  •  
34.
  • Kyprianidis, Konstantinos, et al. (författare)
  • Dynamic performance investigations of a turbojet engine using a cross-application visual oriented platform
  • 2008
  • Ingår i: Aeronautical Journal. - 0001-9240. ; 112:1129, s. 161-169
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents the development of visual oriented tools for the dynamic performance simulation of a turbojet engine using a cross-application approach. In particular, the study focuses on the feasibility of developing simulation models using different programming environments and linking them together using a popular spreadsheet program. As a result of this effort, a low fidelity cycle program has been created, capable of being integrated with other performance models. The amount of laboratory sessions required for student training during an educational procedure, for example for a course in gas turbine performance simulation, is greatly reduced due to the familiarity of most students with the spreadsheet software. The model results have been validated using commercially available gas turbine simulation software and experimental data from open literature. The most important finding of this study is the capability of the program to link to aircraft performance models and predict the transient working line of the engine for various initial conditions in order to dynamically simulate flight phases including take-off and landing.
  •  
35.
  • Kyprianidis, Konstantinos, et al. (författare)
  • Multi-disciplinary Analysis of a Geared Fan Intercooled Core Aero-Engine
  • 2013
  • Ingår i: <em><em>Proc. ASME</em>.</em> 55133; Volume 2: Aircraft Engine; Coal, Biomass and Alternative Fuels; Cycle Innovations, V002T07A027. GT2013-95474. - 9780791855133
  • Konferensbidrag (refereegranskat)abstract
    • Reduction of CO2 emissions is strongly linked with the improvement of engine specific fuel consumption, as well as the reduction of engine nacelle drag and weight. One alternative design approach to improving specific fuel consumption is to consider a geared fan combined with an increased overall pressure ratio intercooled core performance cycle. Thermal benefits from intercooling have been well documented in the literature. Nevertheless, there is very little information available in the public domain with respect to design space exploration of such an engine concept when combined with a geared fan. The present work uses a multidisciplinary conceptual design tool to analyse the option of an intercooled core geared fan aero engine for long haul applications with a 2020 entry into service technology level assumption.With minimum mission fuel in mind, the results indicate as optimal values a pressure ratio split exponent of 0.38 and an intercooler mass flow ratio just below 1.2 at hot-day top of climb conditions. At ISA mid-cruise conditions a specific thrust of 86m/s, a jet velocity ratio of 0.83, an intercooler effectiveness of 55% and an overall pressure ratio value of 76 are likely to be a good choice. A 70,000lbf intercooled turbofan engine is large enough to make efficient use of an all-axial compression system, particularly within a geared fan configuration, but intercooling is perhaps more likely to be applied to even larger engines.The proposed optimal jet velocity ratio is actually higher than the value one would expect by using standard analytical expressions primarily because this design variable affects core efficiency at mid-cruise due to a combination of several different subtle changes to the core cycle and core component efficiencies at this condition. Analytical expressions do not consider changes in core efficiency and the beneficial effect of intercooling on transfer efficiency, nor account for losses in the bypass duct and jet pipe, whilst a relatively detailed engine performance model such as the one utilised in this study does.Mission fuel results from a surrogate model are in good agreement with the results obtained from a rubberised-wing aircraft model for some of the design parameters. This indicates that it is possible to replace an aircraft model with specific fuel consumption and weight penalty exchange rates. Nevertheless, drag count exchange rates have to be utilised to properly assess changes in mission fuel for those design parameters that affect nacelle diameter.
  •  
36.
  • Winikka, Henrik, et al. (författare)
  • Particle formation during pressurized entrained flow gasification of wood powder : Effects of process conditions on chemical composition, nanostructure, and reactivity
  • 2018
  • Ingår i: Combustion and Flame. - : Elsevier BV. - 0010-2180 .- 1556-2921. ; 189, s. 1339-1351
  • Tidskriftsartikel (refereegranskat)abstract
    • The influence of operating condition on particle formation during pressurized, oxygen blown gasification of wood powder with an ash content of 0.4 wt% was investigated. The investigation was performed with a pilot scale gasifier operated at 7 bar(a). Two loads, 400 and 600 kW were tested, with the oxygen equivalence ratio (λ) varied between 0.25 and 0.50. Particle concentration and mass size distribution was analyzed with a low pressure cascade impactor and the collected particles were characterized for morphology, elemental composition, nanostructure, and reactivity using scanning electron microscopy/high resolution transmission electron microscopy/energy dispersive spectroscopy, and thermogravimetric analysis. In order to quantify the nanostructure of the particles and identify prevalent sub-structures, a novel image analysis framework was used. It was found that the process temperature, affected both by λ and the load of the gasifier, had a significant influence on the particle formation processes. At low temperature (1060 °C), the formed soot particles seemed to be resistant to the oxidation process; however, when the oxidation process started at 1119 °C, the internal burning of the more reactive particle core began. A further increase in temperature (> 1313 °C) lead to the oxidation of the less reactive particle shell. When the shell finally collapsed due to severe oxidation, the original soot particle shape and nanostructure also disappeared and the resulting particle could not be considered as a soot anymore. Instead, the particle shape and nanostructure at the highest temperatures (> 1430 °C) were a function of the inorganic content and of the inorganic elements the individual particle consisted of. All of these effects together lead to the soot particles in the real gasifier environment having less and less ordered nanostructure and higher and higher reactivity as the temperature increased; i.e., they followed the opposite trend of what is observed during laboratory-scale studies with fuels not containing any ash-forming elements and where the temperature was not controlled by λ.
  •  
37.
  • Edman, Jonas, 1973 (författare)
  • Modeling Diesel spray combustion using a Detailed Chemistry Approach
  • 2005
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The rapid development of computer hardware during the past decade has contributed substantially to advances in almost all branches of science. Computer modeling is being applied to increasingly small physical scales and increasingly large domains, facilitating the generation of advanced phenomenological models and models based on first principles. These developments have been especially valuable in fields where highly complex micro-scale events are observed or modeled, such as combustion studies, allowing (for instance) the incorporation of complex chemical combustion kinetics into engine spray combustion models. The crude models and global curve fits that were previously used to represent combustion phenomena have now been largely replaced by models based on "first principles". These modeling developments have coincided fortuitously with a shift in the focus of combustion concepts, from mixing-oriented combustion modes like Diesel and stratified charge Otto combustion to the kinetically controlled combustion modes usually referred to as Homogeneous Charge Compression Ignition (HCCI). The driving forces behind the development of the HCCI concept are environmental considerations, manifested in the form of emission legislation. Theoretically, HCCI combustion (characterized by fuel lean mixtures and low peak temperatures) has the potential to reduce soot and NOx emissions to current emission legislation levels even without after-treatment systems. In practical production engine applications, due to current drawbacks such as poor high load capability, the capacity to switch to conventional mode at high load operation is required. For the above reasons, computer modeling that is capable of describing both old and new combustion modes is required. In the work underlying this thesis, CFD modeling was applied to the passenger car Dl Diesel engine operated in both HCCI and conventional Diesel combustion modes. The aim was to couple chemical combustion kinetics and turbulent mixing in order to capture relevant phenomena related to ignition and emission formation for both modes. The resulting, coupled model is referred to as the Partially Stirred Reactor model (PaSR), and is the main component in the Detailed Chemistry Approach currently utilized in combustion modeling at Chalmers University of Technology (CTH). Other essential components of the Detailed Chemistry Approach are the Reference Species Technique (used to determine the relevant chemical timescales) and the Diesel fuel surrogate model (constructed to facilitate realistic treatment of the fuel in both liquid and gaseous states). The gaseous kinetic treatment of the Diesel fuel surrogate model, represented by a blend of aliphatic and aromatic components, consists of a chemical kinetic mechanism considering -75 chemical species participating in -330 elementary or global reactions describing n-heptane and toluene oxidation. Although most of the modeling was done in the CFD code KIVA-3V rel2, the development and validation of the chemical kinetic combustion mechanism was done using the SENKIN code and the CHEMKIN package. The chemical kinetic modeling has provided a kinetic mechanism for Diesel combustion that is capable of reproducing experimental ignition delay characteristics of both n-heptane and toluene oxidation in both low and high pressure regimes. In addition, it reproduces the negative temperature coefficient behavior that is an important feature of commercial Diesel fuels. It has also been able to reproduce cool flame phenomena, which play important roles in HCCI combustion. Results from the constant volume spray modeling have shown that the spray development, liquid and gas penetration and ignition characteristics observed in high pressure Diesel spray experiments are properly reproduced. Furthermore, major combustion variables such as ignition timing, heat release and pressure traces generated in engine simulations have satisfactorily reproduced experimental data acquired in tests using a single cylinder engine at Chalmers University of Technology.
  •  
38.
  •  
39.
  • Hong, Beichuan, Ph.D. student, 1989- (författare)
  • Exergy Evaluation of Engine Operations : Combustion Process to Exhaust Flow
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Transitioning the transport sector to clean energy sources is crucial for mitigating greenhouse gas emissions and achieving carbon neutrality. A collaborative solution, combining both electric vehicles and combustion engines using renewable fuels, may prove more effective than competitive ones. This necessitates a focus on developing sustainable combustion engines by improving their efficiency through renewable energy sources and innovative technologies.This thesis uses exergy analysis to evaluate engine efficiency, losses, and irreversibilities, as well as the work potential of exhaust flows. Particular emphasis is placed on the implications of these exergy analyses in relation to engine operations, especially concerning combustion processes and exhaust pulsations. Exergy analysis quantifies the maximum work extractable from an energy source, enabling the identification and quantification of losses and inefficiencies in thermal processes. A dual-fuel marine engine with two-stage turbocharging and an ethanol-fueled heavy-duty spark-ignition (SI) engine using lean burn are examined with validated one-dimensional engine models to analyze engine performance and losses from an exergy perspective. In the tested marine engine, irreversibilities are quantified and categorized into three types, with combustion irreversibility being the most significant, followed by losses through gas exchange and heat dissipation. In the ethanol-fueled SI engine, the effect of lean-burn combustion at high load is investigated through the excess air ratio up to 1.8, assessing its impact on thermal efficiency, combustion phasing, as well as energy and exergy distributions. Results indicate that employing lean burn improves engine efficiency with advanced combustion phasing but also leads to more exergy destruction. The importance of maintaining high exergy recovery through turbocharging for diluted operation is also highlighted.Additionally, high-frequency exhaust pulsations resulting from valve motion pose challenges in accurately resolving exhaust energy and exergy. To address this, this thesis investigates methods for exhaust pulse characterization and measurement under unsteady flow conditions. Sensitivity analyses, based on a heavy-duty engine simulation, highlight the importance of time-resolved mass flow measurements in quantifying the energy and exergy of exhaust pulsations. Subsequently, this research implements a Pitot tube-based approach to measure crank angle-resolved engine exhaust mass flow rates and to further analyze the effect of attenuated temperature measurements on resolving instantaneous mass flows. The findings indicate that temperature variations pertaining to exhaust flow conditions have only a relatively small impact on mass flow measurements. Based on the exhaust flow measurements, the mass flow characteristics of exhaust pulsations are also discussed with regard to the blow-down and scavenge phases.
  •  
40.
  • Le, Cuong, 1982, et al. (författare)
  • Analysis of Power Disturbances from Monitoring Multiple Levels and Locations in a Power System
  • 2010
  • Ingår i: The 14th IEEE Int'l Conf. on Harmonics and Quality of Power, 26-29 Sep. 2010, Bergamo, Italy. - : IEEE Communications Society. - 9781424472444 - 9781424472451
  • Konferensbidrag (refereegranskat)abstract
    • This paper proposes a new methodology for diagnosing the original source and underlying causes of power system disturbances, where voltage and current recordings from different locations of a power system are collected. In the proposed method, disturbances are first pre-classified based on the number of transition segments. The spatial zone of the source of disturbances is coarsely determined from voltage recordings only. Disturbances are then further analyzed and characterized by extracting information from both voltages and currents. Finally more accurate information about the location of the source of disturbances is obtained by different techniques depending on the type of disturbances. Several underlying causes are analyzed and classified by using the proposed features extracted from both voltage and current waveforms. Finally, the location of the source of disturbances is refined once the underlying causes are found. Case studies were performed on a large grid-connected wind farm with disturbances from several underlying causes, including: fault, unit tripping, transformer, capacitor, and cable energizing generated by PSCAD/EMTDC.
  •  
41.
  • Hemida, Hassan, 1972, et al. (författare)
  • LES study of the influence of the vortex generators on cooling of surface-mounted cubes
  • 2007
  • Ingår i: 1st International Conference on Thermal Issues in Emerging Technologies, Theory and Applications, Proceedings - ThETA1, Cairo, Egypt, 3-6 January 2007. - 1424408970 ; , s. 55-62
  • Konferensbidrag (refereegranskat)abstract
    • The influence of vortex generators on the enhancement of heat transfer from a wall-mounted cube matrix was investigated by numerical simulation using finite-volume method. The momentum and convective heat transfer equations were discretized and solved using large-eddy simulation. The numerical simulation was performed on a fully developed turbulent flow over one cube mounted in the middle of a cube matrix. Constant heat flux was generated from the cubes. Periodic boundary conditions were applied in both the streamwise and the spanwise directions. In order to study the influence of vortex generator on the flow structures and heat transfer coefficient, the flow and the convective heat transfer equations were solved around two cube configurations: a smooth cube and a cube with vortex generator attached to its surface. The vortex generator used in this investigation is a simple rib attached to the top and the side walls of the cube close to the streamwise edge. The flow Reynolds number based on the bulk velocity and the height of the channel was 13000. Standard Smagorinsky subgrid-scale model was used to model the unresolved scales and heat fluxes. The LES results were compared with the experimental results and good agreement was obtained. Numerical flow visualization was used to provide a better insight into the flow structures and heat transfer coefficient around the cubes. The LES results showed that the flow in the boundary layer around the cube with vortex generator is more turbulent and unsteady than the flow around the smooth cube without the vortex generator. More turbulent structures are generated close to the surface of the cube resulting in a good mixing of heat and hence high heat transfer coefficient
  •  
42.
  • Somhorst, Joop, 1965 (författare)
  • Thermal insulation of the combustion chamber in a light duty diesel engine
  • 2024
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Reduction of heat loss from the combustion chamber in an engine has great potential to decrease fuel consumption and CO2 emissions. Research on thermal barrier coatings (TBC) has been performed since the early eighties to address this potential. However, reported results for engine efficiency improvements with insulation show a large spread and there is no consensus on the actual benefits of TBCs. The purpose of this PhD project was to make an accurate assessment of state-of-the-art TBCs and establish what coating properties are required to improve indicated engine efficiency. Cylinder pressure data and measured heat losses to the piston cooling oil in a light duty single cylinder engine formed the basis for the experimental research. A robust and automated measurement method was developed and combined with statistical modeling of the data. Plasma sprayed yttria stabilized zirconia and anodized alumina were selected to establish the effectiveness of state-of-the-art TBCs. These coatings, applied on the piston top, did not improve indicated efficiency. The high surface roughness of the coatings was an important contributor to the poor performance. Experiments with a novel coating technology: suspension plasma spraying and a new material gadolinium-zirconate, led to a slightly improved indicated efficiency. Details in the heat release analysis indicated that the high open porosity in this coating might lead to increased heat losses and fuel entrainment. An investigation of possible charge entrainment effects in a standard plasma sprayed zirconia thermal barrier coating was performed, using a combination of engine experiments, CFD simulations and a 0D crevice model. The crevice model predicted the observed deviations of the apparent rate of heat release surprisingly well, which is strong evidence for the existance and significance of this crevice effect. To significantly increase engine efficiency with thermal insulation, materials with further reduced thermal conductivity and volumetric heat capacity are needed, while negative effects such as high surface roughness and crevice effects from permeable porosity should be minimized.
  •  
43.
  • Andersson, H.M., et al. (författare)
  • Application of digital speckle photography to measure thickness variations in the vacuum infusion process
  • 2003
  • Ingår i: Polymer Composites. - : Wiley. - 0272-8397 .- 1548-0569. ; 24:3, s. 448-455
  • Tidskriftsartikel (refereegranskat)abstract
    • A new method to measure the movement of the flexible bag used in vacuum infusion is presented. The method is based on an in-house developed stereoscopic digital speckle photography system (DSP). The advantage with this optical method, which is based on cross-correlation, is that the deflection of a large area can be continuously measured with a great accuracy (down to 10 μm. The method is at this stage most suited for research but can in the long run also be adopted in production control and optimization. By use of the method it was confirmed that a ditch is formed at the resin flow front and that there can be a considerable and seemingly perpetual compaction after complete filling. The existence of the ditch demonstrates that the stiffness of the reinforcement can be considerably reduced when it is wetted. Hence, the maximum fiber volume fraction can be larger than predicted from dry measurements of preform elasticity. It is likely that the overall thickness reduction after complete filling emanates from lubrication of the fibers combined with an outflow of the resin. Besides, the cross-linking starts and the polymer shrinks. Hence, the alteration in height will continue until complete cross-linking is reached.
  •  
44.
  • Carlsson, Per, et al. (författare)
  • High-speed imaging of biomass particles heated with a laser
  • 2013
  • Ingår i: Journal of Analytical and Applied Pyrolysis. - : Elsevier BV. - 0165-2370 .- 1873-250X. ; 103, s. 278-286
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work two types of lignocellulosic biomass particles, European spruce and American hardwood (particle sizes from 100 μm to 500 μm) were pyrolysed with a continuous wave 2 W Nd:YAG laser. Simultaneously a high-speed camera was used to capture the behavior of the biomass particle as it was heated for about 0.1 s. Cover glasses were used as a sample holder which allowed for light microscope studies after the heating. Since the cover glasses are not initially heated by the laser, vapors from the biomass particle are quenched on the glass within about 1 particle diameter from the initial particle. Image processing was used to track the contour of the biomass particle and the enclosed area of the contour was calculated for each frame.The main observations are: There is a significant difference between how much surface energy is needed to pyrolyses the spruce (about 75% more) compared to the hardwood. The oil-like substance which appeared on the glass during the experiment is solid at room temperature and shows different levels of transparency. A fraction of this substance is water soluble. A brownish coat is seen on the unreacted biomass. The biomass showed insignificant swelling as it was heated. The biomass particle appears to melt and boil at the front that is formed between the laser beam and the biomass particle. The part of the particle that is not subjected to the laser beam seems to be unaffected.
  •  
45.
  • Chen, Yousheng, 1985-, et al. (författare)
  • Experimental Validation of a Nonlinear Model Calibration Method Based on Multiharmonic Frequency Responses
  • 2017
  • Ingår i: Journal of Computational and Nonlinear Dynamics. - : ASME Press. - 1555-1415 .- 1555-1423. ; 12:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Correlation and calibration using test data are natural ingredients in the process of validating computational models. Model calibration for the important subclass of nonlinear systems which consists of structures dominated by linear behavior with the presence of local nonlinear effects is studied in this work. The experimental validation of a nonlinear model calibration method is conducted using a replica of the École Centrale de Lyon (ECL) nonlinear benchmark test setup. The calibration method is based on the selection of uncertain model parameters and the data that form the calibration metric together with an efficient optimization routine. The parameterization is chosen so that the expected covariances of the parameter estimates are made small. To obtain informative data, the excitation force is designed to be multisinusoidal and the resulting steady-state multiharmonic frequency response data are measured. To shorten the optimization time, plausible starting seed candidates are selected using the Latin hypercube sampling method. The candidate parameter set giving the smallest deviation to the test data is used as a starting point for an iterative search for a calibration solution. The model calibration is conducted by minimizing the deviations between the measured steady-state multiharmonic frequency response data and the analytical counterparts that are calculated using the multiharmonic balance method. The resulting calibrated model's output corresponds well with the measured responses.
  •  
46.
  • Li, Xiaojian, 1991, et al. (författare)
  • A new method for performance map prediction of automotive turbocharger compressors with both vaneless and vaned diffusers
  • 2021
  • Ingår i: Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. - : SAGE Publications. - 2041-2991 .- 0954-4070. ; 235:6, s. 1734-1747
  • Tidskriftsartikel (refereegranskat)abstract
    • A new approach to predict the performance maps of automotive turbocharger compressors is presented. Firstly, a polynomial equation is applied to fit the experimental data of flow coefficient ratios for the centrifugal compressors with both vaneless and vaned diffusers. Based on this equation, the choke and surge flow coefficients under different machine Mach numbers can be quickly predicted. Secondly, a physically based piecewise elliptic equation is used to define compressors’ characteristic curves in terms of efficiency ratio. By introducing the flow coefficient ratio into the efficiency correlation, the empirical coefficients in the piecewise elliptic equation are uniquely calibrated by the experimental data, forming a unified algebraic equation to match the efficiency maps of the compressors with both vaneless and vaned diffusers. Then, a new universal equation, which connects the work coefficient, the impeller outlet flow coefficient and the non-dimensional equivalent impeller outlet width, is derived by using classical aerothermodynamic method. The off-design pressure ratio is predicted based on the equivalent impeller outlet width with less knowledge of the compressor geometry and no empirical coefficients. Finally, three state-of-the-art turbocharger compressors (one with vaneless diffuser, two with vaned diffusers) are chosen to validate the proposed method, and the results show a satisfactory accuracy for the performance map prediction. This method can be used for the preliminary design of turbocharger compressors with both vaneless and vaned diffusers, or to assess the design feasibility and challenges of the given design specifications.
  •  
47.
  • Liu, Qianyun, et al. (författare)
  • Roadside assessment of a modern city bus fleet: Gaseous and particle emissions
  • 2019
  • Ingår i: Atmospheric Environment: X. - : Elsevier BV. - 2590-1621. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2019 The Authors In many cities worldwide, modern fleets have been introduced to reduce gaseous and particle emissions from city buses. To date, most emission studies are limited to a few vehicles, making a statistically significant assessment of control options difficult, especially under real-world driving conditions. Exhaust emissions of 234 individual city buses were measured under real-world stop-and-go traffic conditions at a bus stop in Gothenburg, Sweden. The buses comprised models fulfilling Euro III-VI and EEV (Enhanced Environmentally Friendly Vehicle) standards with different engine technologies, fuels, and exhaust after-treatment systems, and also included hybrid-electric buses (HEV). Both gaseous (NOx, CO, HC, and SO2) and size-resolved particle number (PN) and mass (PM) emission factors (EF) were calculated for vehicles using compressed natural gas (CNG), diesel (DSL), Rapeseed Methyl Ester (RME) and Hydro-treated Vegetable Oil (HVO) equipped with various after-treatment technologies, e.g., diesel particulate filter (DPF), selective catalytic reduction (SCR) and exhaust gas recirculation (EGR) systems. The highest median EFPN was obtained from Euro VHEV-HVO-SCR buses (MdEFPN = 18×1014 # kg-1) when their combustion engines were used though 53% of their accelerations were below detection limits indicating the use of their electrical engine. The highest MdEFPM was obtained from the Euro V-DSL-SCR buses (MdEFPM = 150 mg kg-1) and the lowest from EEV-CNG buses (below detection threshold) and Euro VIHEV-HVO- SCR+EGR+DPF buses (MdEFPM = 19 mg kg-1). The highest MdEFNOx was obtained from the Euro V-RME-SCR (MdEFNOx = 30 g kg-1) and Euro VHEV-HVO-SCR buses (MdEFNOx = 24 g kg-1), and the lowest from CNG buses (MdEFNOx = 4.8 g kg-1) and Euro VIHEV-HVO-SCR+EGR+DPF buses (MdEFNOx = 7.4 g kg-1). Hybrid buses can give higher PN emissions compared to traditional diesel engines, likely due to downsized combustion engines. Replacing diesel by biodiesel fuel reduced MdEFPM significantly but increased MdEFNOx which may be due to the higher combustion temperature and oxygen contents of the fuel (for RME). Overall, the EEV-CNG buses performed the best regarding both the MdEF and low contribution to the high emitters. It was also found that a small (5%) proportion of the buses contributed significantly (14-30%) to the total emissions. Identification and monitoring the maintenance of the high emitters in the fleets should be considered for the improvement of air quality.
  •  
48.
  • Lycksam, Henrik, et al. (författare)
  • High-speed interferometric measurement and visualization of the conversion of a black liquor droplet during laser heating
  • 2012
  • Ingår i: Optics and lasers in engineering. - : Elsevier BV. - 0143-8166 .- 1873-0302. ; 50:11, s. 1654-1661
  • Tidskriftsartikel (refereegranskat)abstract
    • Black liquor is a mix of organic and inorganic materials that is left after the kraft pulping process. In a modern pulp mill the pulping chemicals and the energy in the black liquor is recovered and used in the pulping cycle by burning the black liquor in a recovery burner. An alternative to the recovery boiler is to gasify the black liquor to produce an energy rich synthesis gas that can be upgraded into synthetic fuels or chemicals. Characterization of black liquor has mostly been done under conditions that are relevant for recovery boilers but the conditions in a gasifier differ significantly from this. In particular the droplets are much smaller and the heating rates are much higher. This paper presents an optical interferometric technique that has the potential to produce data under relevant conditions for gasification. In the paper, results are measured at atmospheric conditions and with relatively low heating rate. However, the method can be applied also for pressurized conditions and at heating rates that are only limited by the frame rate of the digital camera that is used to capture the transient event when the droplets are heated. In the paper the dynamic properties of the gas ejected from and the swelling during conversion of a single droplet are measured
  •  
49.
  • Koturbash, Taras, 1986-, et al. (författare)
  • New instrument for measuring the velocity of sound in gases and quantitative characterization of binary gas mixtures
  • 2016
  • Ingår i: Pomiary Automatyka Kontrola = Measurement Automation and Monitoring. - Warsaw, Poland. - 0032-4140. ; 65:08, s. 254-258
  • Tidskriftsartikel (refereegranskat)abstract
    • A new instrument for precise measurements of velocity of sound in gases was developed and tested. The instrument implements improved velocity of sound measuring technique based on time-of-flight measurement of ultrasonic pulses.  The instrument was developed primarily for conducting measurements in natural gas, it can operate in wide ranges of natural gas compositions as well as other gas mixtures with velocity of sound parameter in range of 200 to 500 m/s.The instrument allows conducting measurement of velocity of sound propagation in various gas mixtures with average repeatability of equal to ±1 cm/s at normal conditions. The accuracy of measurement depends on calibration conditions and approach and has good agreement with theoretically calculated values. The instrument has a modular design of control unit and flow-through measuring chamber. The set of distinctive features and adjustable measuring parameters of the instrument allows further improving of applicability for other gases and gas mixtures and various measurement conditions.The instrument showed good performance in the task of quantitative characterization of binary gas mixtures by velocity of sound parameter.
  •  
50.
  • Chernoray, Valery, 1975 (författare)
  • Prediction of Laminar-Turbulent Transition on an Airfoil at High Level of Free-Stream Turbulence
  • 2015
  • Ingår i: Progress in Flight Physics Vol. 7. - 9785945881655 ; , s. 704-
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • Prediction of laminar-turbulent transition at high level of free-stream turbulence in boundary layers of airfoil geometries with external pressure gradient changeover is in focus. The aim is a validation of a transition model for transition prediction in turbomachinery applications. Numerical simulations have been performed by using a transition model by Langtry and Menter for a number of different cases of pressure gradient, at Reynolds number-range, based on the airfoil chord, 50 000 ≤ Re ≤ 500 000 and free-stream turbulence intensities 2 % and 4 %. The validation of the computational results against the experimental data showed good performance of used turbulence model for all test cases.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 12449
Typ av publikation
tidskriftsartikel (6415)
konferensbidrag (3670)
doktorsavhandling (556)
rapport (543)
licentiatavhandling (369)
bokkapitel (336)
visa fler...
forskningsöversikt (229)
annan publikation (175)
bok (54)
patent (42)
proceedings (redaktörskap) (33)
samlingsverk (redaktörskap) (23)
recension (4)
konstnärligt arbete (3)
visa färre...
Typ av innehåll
refereegranskat (9777)
övrigt vetenskapligt/konstnärligt (2518)
populärvet., debatt m.m. (154)
Författare/redaktör
Sundén, Bengt (841)
Leckner, Bo G, 1936 (264)
Ji, Xiaoyan (248)
Johnsson, Filip, 196 ... (219)
Yan, Jinyue, 1959- (209)
Li, Hailong, 1976- (184)
visa fler...
Yan, Jinyue (182)
Fransson, Torsten (180)
Öhman, Marcus (169)
Lyngfelt, Anders, 19 ... (168)
Zhang, Xingxing (154)
Yuan, Jinliang (145)
Bollen, Math (139)
Mattisson, Tobias, 1 ... (135)
Lu, Xiaohua (135)
Xie, Gongnan (127)
Palm, Björn (119)
Thunman, Henrik, 197 ... (115)
Kyprianidis, Konstan ... (108)
Laumert, Björn (108)
Ma, Weimin (108)
Bai, Xue-Song (106)
Zhu, Bin (105)
Andersson, Martin (104)
Umeki, Kentaro (102)
$$$Kudinov, Pavel (100)
Normann, Fredrik, 19 ... (100)
Wu, Zan (99)
Harvey, Simon, 1965 (99)
Andersson, Klas, 197 ... (99)
Åmand, Lars-Erik, 19 ... (97)
Boström, Dan (95)
Tunestål, Per (93)
Pallarès, David, 197 ... (90)
Anglart, Henryk (86)
Dahl, Jan (84)
Aldén, Marcus (81)
Yang, Weihong (81)
Lundgren, Joakim (80)
Gebart, Rikard (80)
Wang, Lei (79)
Skoglund, Nils (78)
Rydén, Magnus, 1975 (76)
Li, Zhongshan (76)
Bechta, Sevostian (75)
Tunér, Martin (73)
Grip, Carl-Erik (73)
Boman, Christoffer (71)
Berntsson, Thore, 19 ... (69)
Bales, Chris (69)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (3456)
Chalmers tekniska högskola (3070)
Lunds universitet (2105)
Luleå tekniska universitet (1664)
Mälardalens universitet (1105)
RISE (453)
visa fler...
Uppsala universitet (432)
Högskolan Dalarna (417)
Umeå universitet (325)
Högskolan i Gävle (271)
Linköpings universitet (199)
Högskolan i Halmstad (182)
Karlstads universitet (124)
Linnéuniversitetet (111)
Sveriges Lantbruksuniversitet (82)
Stockholms universitet (74)
Göteborgs universitet (69)
Högskolan i Borås (61)
Jönköping University (36)
IVL Svenska Miljöinstitutet (32)
Mittuniversitetet (30)
Högskolan Väst (21)
Malmö universitet (19)
VTI - Statens väg- och transportforskningsinstitut (15)
Örebro universitet (14)
Högskolan i Skövde (13)
Blekinge Tekniska Högskola (13)
Karolinska Institutet (7)
Högskolan Kristianstad (1)
Naturvårdsverket (1)
visa färre...
Språk
Engelska (11974)
Svenska (411)
Kinesiska (18)
Ryska (12)
Persiska (11)
Franska (5)
visa fler...
Tyska (4)
Spanska (4)
Norska (2)
Portugisiska (2)
Japanska (2)
Italienska (1)
Odefinierat språk (1)
Finska (1)
Polska (1)
visa färre...
Forskningsämne (UKÄ/SCB)
Teknik (12449)
Naturvetenskap (1087)
Samhällsvetenskap (189)
Lantbruksvetenskap (67)
Medicin och hälsovetenskap (22)
Humaniora (11)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy