SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1474 4465 OR L773:1474 4422 srt2:(2020-2023)"

Sökning: L773:1474 4465 OR L773:1474 4422 > (2020-2023)

  • Resultat 1-10 av 47
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chetelat, G., et al. (författare)
  • Amyloid-PET and 18-F-FDG-PET in the diagnostic investigation of Alzheimer's disease and other dementias
  • 2020
  • Ingår i: Lancet Neurology. - 1474-4422 .- 1474-4465. ; 19:11, s. 951-962
  • Forskningsöversikt (refereegranskat)abstract
    • Various biomarkers are available to support the diagnosis of neurodegenerative diseases in clinical and research settings. Among the molecular imaging biomarkers, amyloid-PET, which assesses brain amyloid deposition, and F-18-fluorodeoxyglucose (F-18-FDG) PET, which assesses glucose metabolism, provide valuable and complementary information. However, uncertainty remains regarding the optimal timepoint, combination, and an order in which these PET biomarkers should be used in diagnostic evaluations because conclusive evidence is missing. Following an expert panel discussion, we reached an agreement on the specific use of the individual biomarkers, based on available evidence and clinical expertise. We propose a diagnostic algorithm with optimal timepoints for these PET biomarkers, also taking into account evidence from other biomarkers, for early and differential diagnosis of neurodegenerative diseases that can lead to dementia. We propose three main diagnostic pathways with distinct biomarker sequences, in which amyloid-PET and F-18-FDG-PET are placed at different positions in the order of diagnostic evaluations, depending on clinical presentation. We hope that this algorithm can support diagnostic decision making in specialist clinical settings with access to these biomarkers and might stimulate further research towards optimal diagnostic strategies.
  •  
2.
  • Karikari, Thomas, et al. (författare)
  • Blood phosphorylated tau 181 as a biomarker for Alzheimer's disease: a diagnostic performance and prediction modelling study using data from four prospective cohorts.
  • 2020
  • Ingår i: The Lancet. Neurology. - 1474-4465 .- 1474-4422. ; 19:5, s. 422-433
  • Tidskriftsartikel (refereegranskat)abstract
    • CSF and PET biomarkers of amyloid β and tau accurately detect Alzheimer's disease pathology, but the invasiveness, high cost, and poor availability of these detection methods restrict their widespread use as clinical diagnostic tools. CSF tau phosphorylated at threonine 181 (p-tau181) is a highly specific biomarker for Alzheimer's disease pathology. We aimed to assess whether blood p-tau181 could be used as a biomarker for Alzheimer's disease and for prediction of cognitive decline and hippocampal atrophy.We developed and validated an ultrasensitive blood immunoassay for p-tau181. Assay performance was evaluated in four clinic-based prospective cohorts. The discovery cohort comprised patients with Alzheimer's disease and age-matched controls. Two validation cohorts (TRIAD and BioFINDER-2) included cognitively unimpaired older adults (mean age 63-69 years), participants with mild cognitive impairment (MCI), Alzheimer's disease, and frontotemporal dementia. In addition, TRIAD included healthy young adults (mean age 23 years) and BioFINDER-2 included patients with other neurodegenerative disorders. The primary care cohort, which recruited participants in Montreal, Canada, comprised control participants from the community without a diagnosis of a neurological condition and patients referred from primary care physicians of the Canadian National Health Service for specialist care. Concentrations of plasma p-tau181 were compared with established CSF and PET biomarkers and longitudinal measurements using Spearman correlation, area under the curve (AUC), and linear regression analyses.We studied 37 individuals in the discovery cohort, 226 in the first validation cohort (TRIAD), 763 in the second validation cohort (BioFINDER-2), and 105 in the primary care cohort (n=1131 individuals). In all cohorts, plasma p-tau181 showed gradual increases along the Alzheimer's disease continuum, from the lowest concentrations in amyloid β-negative young adults and cognitively unimpaired older adults, through higher concentrations in the amyloid β-positive cognitively unimpaired older adults and MCI groups, to the highest concentrations in the amyloid β-positive MCI and Alzheimer's disease groups (p<0·001, Alzheimer's disease vs all other groups). Plasma p-tau181 distinguished Alzheimer's disease dementia from amyloid β-negative young adults (AUC=99·40%) and cognitively unimpaired older adults (AUC=90·21-98·24% across cohorts), as well as other neurodegenerative disorders, including frontotemporal dementia (AUC=82·76-100% across cohorts), vascular dementia (AUC=92·13%), progressive supranuclear palsy or corticobasal syndrome (AUC=88·47%), and Parkinson's disease or multiple systems atrophy (AUC=81·90%). Plasma p-tau181 was associated with PET-measured cerebral tau (AUC=83·08-93·11% across cohorts) and amyloid β (AUC=76·14-88·09% across cohorts) pathologies, and 1-year cognitive decline (p=0·0015) and hippocampal atrophy (p=0·015). In the primary care cohort, plasma p-tau181 discriminated Alzheimer's disease from young adults (AUC=100%) and cognitively unimpaired older adults (AUC=84·44%), but not from MCI (AUC=55·00%).Blood p-tau181 can predict tau and amyloid β pathologies, differentiate Alzheimer's disease from other neurodegenerative disorders, and identify Alzheimer's disease across the clinical continuum. Blood p-tau181 could be used as a simple, accessible, and scalable test for screening and diagnosis of Alzheimer's disease.Alzheimer Drug Discovery Foundation, European Research Council, Swedish Research Council, Swedish Alzheimer Foundation, Swedish Dementia Foundation, Alzheimer Society Research Program.
  •  
3.
  • Roaldsen, M.B., et al. (författare)
  • Safety and efficacy of tenecteplase in patients with wake-up stroke assessed by non-contrast CT (TWIST): a multicentre, open-label, randomised controlled trial
  • 2023
  • Ingår i: The Lancet Neurology. - 1474-4422 .- 1474-4465. ; 22:2, s. 117-126
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Current evidence supports the use of intravenous thrombolysis with alteplase in patients with wake-up stroke selected with MRI or perfusion imaging and is recommended in clinical guidelines. However, access to advanced imaging techniques is often scarce. We aimed to determine whether thrombolytic treatment with intravenous tenecteplase given within 4·5 h of awakening improves functional outcome in patients with ischaemic wake-up stroke selected using non-contrast CT. Methods: TWIST was an investigator-initiated, multicentre, open-label, randomised controlled trial with blinded endpoint assessment, conducted at 77 hospitals in ten countries. We included patients aged 18 years or older with acute ischaemic stroke symptoms upon awakening, limb weakness, a National Institutes of Health Stroke Scale (NIHSS) score of 3 or higher or aphasia, a non-contrast CT examination of the head, and the ability to receive tenecteplase within 4·5 h of awakening. Patients were randomly assigned (1:1) to either a single intravenous bolus of tenecteplase 0·25 mg per kg of bodyweight (maximum 25 mg) or control (no thrombolysis) using a central, web-based, computer-generated randomisation schedule. Trained research personnel, who conducted telephone interviews at 90 days (follow-up), were masked to treatment allocation. Clinical assessments were performed on day 1 (at baseline) and day 7 of hospital admission (or at discharge, whichever occurred first). The primary outcome was functional outcome assessed by the modified Rankin Scale (mRS) at 90 days and analysed using ordinal logistic regression in the intention-to-treat population. This trial is registered with EudraCT (2014–000096–80), ClinicalTrials.gov (NCT03181360), and ISRCTN (10601890). Findings: From June 12, 2017, to Sept 30, 2021, 578 of the required 600 patients were enrolled (288 randomly assigned to the tenecteplase group and 290 to the control group [intention-to-treat population]). The median age of participants was 73·7 years (IQR 65·9–81·1). 332 (57%) of 578 participants were male and 246 (43%) were female. Treatment with tenecteplase was not associated with better functional outcome, according to mRS score at 90 days (adjusted OR 1·18, 95% CI 0·88–1·58; p=0·27). Mortality at 90 days did not significantly differ between treatment groups (28 [10%] patients in the tenecteplase group and 23 [8%] in the control group; adjusted HR 1·29, 95% CI 0·74–2·26; p=0·37). Symptomatic intracranial haemorrhage occurred in six (2%) patients in the tenecteplase group versus three (1%) in the control group (adjusted OR 2·17, 95% CI 0·53–8·87; p=0·28), whereas any intracranial haemorrhage occurred in 33 (11%) versus 30 (10%) patients (adjusted OR 1·14, 0·67–1·94; p=0·64). Interpretation: In patients with wake-up stroke selected with non-contrast CT, treatment with tenecteplase was not associated with better functional outcome at 90 days. The number of symptomatic haemorrhages and any intracranial haemorrhages in both treatment groups was similar to findings from previous trials of wake-up stroke patients selected using advanced imaging. Current evidence does not support treatment with tenecteplase in patients selected with non-contrast CT. Funding: Norwegian Clinical Research Therapy in the Specialist Health Services Programme, the Swiss Heart Foundation, the British Heart Foundation, and the Norwegian National Association for Public Health. © 2023 Elsevier Ltd
  •  
4.
  • Teunissen, Charlotte E, et al. (författare)
  • Blood-based biomarkers for Alzheimer's disease: towards clinical implementation.
  • 2022
  • Ingår i: The Lancet. Neurology. - 1474-4465 .- 1474-4422. ; 21:1, s. 66-77
  • Tidskriftsartikel (refereegranskat)abstract
    • For many years, blood-based biomarkers for Alzheimer's disease seemed unattainable, but recent results have shown that they could become a reality. Convincing data generated with new high-sensitivity assays have emerged with remarkable consistency across different cohorts, but also independent of the precise analytical method used. Concentrations in blood of amyloid and phosphorylated tau proteins associate with the corresponding concentrations in CSF and with amyloid-PET or tau-PET scans. Moreover, other blood-based biomarkers of neurodegeneration, such as neurofilament light chain and glial fibrillary acidic protein, appear to provide information on disease progression and potential for monitoring treatment effects. Now the question emerges of when and how we can bring these biomarkers to clinical practice. This step would pave the way for blood-based biomarkers to support the diagnosis of, and development of treatments for, Alzheimer's disease and other dementias.
  •  
5.
  • Thijssen, Elisabeth H, et al. (författare)
  • Plasma phosphorylated tau 217 and phosphorylated tau 181 as biomarkers in Alzheimer's disease and frontotemporal lobar degeneration: a retrospective diagnostic performance study.
  • 2021
  • Ingår i: The Lancet. Neurology. - 1474-4465 .- 1474-4422. ; 20:9, s. 739-752
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasma tau phosphorylated at threonine 217 (p-tau217) and plasma tau phosphorylated at threonine 181 (p-tau181) are associated with Alzheimer's disease tau pathology. We compared the diagnostic value of both biomarkers in cognitively unimpaired participants and patients with a clinical diagnosis of mild cognitive impairment, Alzheimer's disease syndromes, or frontotemporal lobar degeneration (FTLD) syndromes.In this retrospective multicohort diagnostic performance study, we analysed plasma samples, obtained from patients aged 18-99 years old who had been diagnosed with Alzheimer's disease syndromes (Alzheimer's disease dementia, logopenic variant primary progressive aphasia, or posterior cortical atrophy), FTLD syndromes (corticobasal syndrome, progressive supranuclear palsy, behavioural variant frontotemporal dementia, non-fluent variant primary progressive aphasia, or semantic variant primary progressive aphasia), or mild cognitive impairment; the participants were from the University of California San Francisco (UCSF) Memory and Aging Center, San Francisco, CA, USA, and the Advancing Research and Treatment for Frontotemporal Lobar Degeneration Consortium (ARTFL; 17 sites in the USA and two in Canada). Participants from both cohorts were carefully characterised, including assessments of CSF p-tau181, amyloid-PET or tau-PET (or both), and clinical and cognitive evaluations. Plasma p-tau181 and p-tau217 were measured using electrochemiluminescence-based assays, which differed only in the biotinylated antibody epitope specificity. Receiver operating characteristic analyses were used to determine diagnostic accuracy of both plasma markers using clinical diagnosis, neuropathological findings, and amyloid-PET and tau-PET measures as gold standards. Difference between two area under the curve (AUC) analyses were tested with the Delong test.Data were collected from 593 participants (443 from UCSF and 150 from ARTFL, mean age 64 years [SD 13], 294 [50%] women) between July 1 and Nov 30, 2020. Plasma p-tau217 and p-tau181 were correlated (r=0·90, p<0·0001). Both p-tau217 and p-tau181 concentrations were increased in people with Alzheimer's disease syndromes (n=75, mean age 65 years [SD 10]) relative to cognitively unimpaired controls (n=118, mean age 61 years [SD 18]; AUC=0·98 [95% CI 0·95-1·00] for p-tau217, AUC=0·97 [0·94-0·99] for p-tau181; pdiff=0·31) and in pathology-confirmed Alzheimer's disease (n=15, mean age 73 years [SD 12]) versus pathologically confirmed FTLD (n=68, mean age 67 years [SD 8]; AUC=0·96 [0·92-1·00] for p-tau217, AUC=0·91 [0·82-1·00] for p-tau181; pdiff=0·22). P-tau217 outperformed p-tau181 in differentiating patients with Alzheimer's disease syndromes (n=75) from those with FTLD syndromes (n=274, mean age 67 years [SD 9]; AUC=0·93 [0·91-0·96] for p-tau217, AUC=0·91 [0·88-0·94] for p-tau181; pdiff=0·01). P-tau217 was a stronger indicator of amyloid-PET positivity (n=146, AUC=0·91 [0·88-0·94]) than was p-tau181 (n=214, AUC=0·89 [0·86-0·93]; pdiff=0·049). Tau-PET binding in the temporal cortex was more strongly associated with p-tau217 than p-tau181 (r=0·80 vs r=0·72; pdiff<0·0001, n=230).Both p-tau217 and p-tau181 had excellent diagnostic performance for differentiating patients with Alzheimer's disease syndromes from other neurodegenerative disorders. There was some evidence in favour of p-tau217 compared with p-tau181 for differential diagnosis of Alzheimer's disease syndromes versus FTLD syndromes, as an indication of amyloid-PET-positivity, and for stronger correlations with tau-PET signal. Pending replication in independent, diverse, and older cohorts, plasma p-tau217 and p-tau181 could be useful screening tools to identify individuals with underlying amyloid and Alzheimer's disease tau pathology.US National Institutes of Health, State of California Department of Health Services, Rainwater Charitable Foundation, Michael J Fox foundation, Association for Frontotemporal Degeneration, Alzheimer's Association.
  •  
6.
  •  
7.
  •  
8.
  • Adams, David, et al. (författare)
  • Long-term safety and efficacy of patisiran for hereditary transthyretin-mediated amyloidosis with polyneuropathy : 12-month results of an open-label extension study
  • 2021
  • Ingår i: Lancet Neurology. - : Elsevier. - 1474-4422 .- 1474-4465. ; 20:1, s. 49-59
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Hereditary transthyretin-mediated amyloidosis is a rare, inherited, progressive disease caused by mutations in the transthyretin (TTR) gene. We assessed the safety and efficacy of long-term treatment with patisiran, an RNA interference therapeutic that inhibits TTR production, in patients with hereditary transthyretin-mediated amyloidosis with polyneuropathy. Methods This multicentre, open-label extension (OLE) trial enrolled patients at 43 hospitals or clinical centres in 19 countries as of Sept 24, 2018. Patients were eligible if they had completed the phase 3 APOLLO or phase 2 OLE parent studies and tolerated the study drug. Eligible patients from APOLLO (patisiran and placebo groups) and the phase 2 OLE (patisiran group) studies enrolled in this global OLE trial and received patisiran 0.3 mg/kg by intravenous infusion every 3 weeks with plans to continue to do so for up to 5 years. Efficacy assessments included measures of polyneuropathy (modified Neuropathy Impairment Score +7 [mNIS+7]), quality of life, autonomic symptoms, nutritional status, disability, ambulation status, motor function, and cardiac stress, with analysis by study groups (APOLLO-placebo, APOLLO-patisiran, phase 2 OLE patisiran) based on allocation in the parent trial. The global OLE is ongoing with no new enrolment, and current findings are based on the interim analysis of the patients who had completed 12-month efficacy assessments as of the data cutoff. Safety analyses included all patients who received one or more dose of patisiran up to the data cutoff. This study is registered with ClinicalTrials.gov, NCT02510261. Findings Between July 13, 2015, and Aug 21, 2017, of 212 eligible patients, 211 were enrolled: 137 patients from the APOLLO-patisiran group, 49 from the APOLLO-placebo group, and 25 from the phase 2 OLE patisiran group. At the data cutoff on Sept 24, 2018, 126 (92%) of 137 patients from the APOLLO-patisiran group, 38 (78%) of 49 from the APOLLO-placebo group, and 25 (100%) of 25 from the phase 2 OLE patisiran group had completed 12-month assessments. At 12 months, improvements in mNIS+7 with patisiran were sustained from parent study baseline with treatment in the global OLE (APOLLO-patisiran mean change -4.0, 95 % CI -7.7 to -0.3; phase 2 OLE patisiran -4.7, -11.9 to 2.4). Mean mNIS+7 score improved from global OLE enrolment in the APOLLO-placebo group (mean change from global OLE enrolment -1.4, 95% CI -6.2 to 3.5). Overall, 204 (97%) of 211 patients reported adverse events, 82 (39%) reported serious adverse events, and there were 23 (11%) deaths. Serious adverse events were more frequent in the APOLLO-placebo group (28 [57%] of 49) than in the APOLLO-patisiran (48 [35%] of 137) or phase 2 OLE patisiran (six [24%] of 25) groups. The most common treatment-related adverse event was mild or moderate infusion-related reactions. The frequency of deaths in the global OLE was higher in the APOLLO-placebo group (13 [27%] of 49), who had a higher disease burden than the APOLLO-patisiran (ten [7%] of 137) and phase 2 OLE patisiran (0 of 25) groups. Interpretation In this interim 12-month analysis of the ongoing global OLE study, patisiran appeared to maintain efficacy with an acceptable safety profile in patients with hereditary transthyretin-mediated amyloidosis with polyneuropathy. Continued long-term follow-up will be important for the overall assessment of safety and efficacy with patisiran. Copyright (C) 2020 Elsevier Ltd. All rights reserved.
  •  
9.
  • Benkert, P., et al. (författare)
  • Serum neurofilament light chain for individual prognostication of disease activity in people with multiple sclerosis: a retrospective modelling and validation study
  • 2022
  • Ingår i: The Lancet Neurology. - 1474-4422 .- 1474-4465. ; 21:3, s. 246-257
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Serum neurofilament light chain (sNfL) is a biomarker of neuronal damage that is used not only to monitor disease activity and response to drugs and to prognosticate disease course in people with multiple sclerosis on the group level. The absence of representative reference values to correct for physiological age-dependent increases in sNfL has limited the diagnostic use of this biomarker at an individual level. We aimed to assess the applicability of sNfL for identification of people at risk for future disease activity by establishing a reference database to derive reference values corrected for age and body-mass index (BMI). Furthermore, we used the reference database to test the suitability of sNfL as an endpoint for group-level comparison of effectiveness across disease-modifying therapies. Methods: For derivation of a reference database of sNfL values, a control group was created, comprising participants with no evidence of CNS disease taking part in four cohort studies in Europe and North America. We modelled the distribution of sNfL concentrations in function of physiological age-related increase and BMI-dependent modulation, to derive percentile and Z score values from this reference database, via a generalised additive model for location, scale, and shape. We tested the reference database in participants with multiple sclerosis in the Swiss Multiple Sclerosis Cohort (SMSC). We compared the association of sNfL Z scores with clinical and MRI characteristics recorded longitudinally to ascertain their respective disease prognostic capacity. We validated these findings in an independent sample of individuals with multiple sclerosis who were followed up in the Swedish Multiple Sclerosis registry. Findings: We obtained 10 133 blood samples from 5390 people (median samples per patient 1 [IQR 1–2] in the control group). In the control group, sNfL concentrations rose exponentially with age and at a steeper increased rate after approximately 50 years of age. We obtained 7769 samples from 1313 people (median samples per person 6·0 [IQR 3·0–8·0]). In people with multiple sclerosis from the SMSC, sNfL percentiles and Z scores indicated a gradually increased risk for future acute (eg, relapse and lesion formation) and chronic (disability worsening) disease activity. A sNfL Z score above 1·5 was associated with an increased risk of future clinical or MRI disease activity in all people with multiple sclerosis (odds ratio 3·15, 95% CI 2·35–4·23; p<0·0001) and in people considered stable with no evidence of disease activity (2·66, 1·08–6·55; p=0·034). Increased Z scores outperformed absolute raw sNfL cutoff values for diagnostic accuracy. At the group level, the longitudinal course of sNfL Z score values in people with multiple sclerosis from the SMSC decreased to those seen in the control group with use of monoclonal antibodies (ie, alemtuzumab, natalizumab, ocrelizumab, and rituximab) and, to a lesser extent, oral therapies (ie, dimethyl fumarate, fingolimod, siponimod, and teriflunomide). However, longitudinal sNfL Z scores remained elevated with platform compounds (interferons and glatiramer acetate; p<0·0001 for the interaction term between treatment category and treatment duration). Results were fully supported in the validation cohort (n=4341) from the Swedish Multiple Sclerosis registry. Interpretation: The use of sNfL percentiles and Z scores allows for identification of individual people with multiple sclerosis at risk for a detrimental disease course and suboptimal therapy response beyond clinical and MRI measures, specifically in people with disease activity-free status. Additionally, sNfL might be used as an endpoint for comparing effectiveness across drug classes in pragmatic trials. Funding: Swiss National Science Foundation, Progressive Multiple Sclerosis Alliance, Biogen, Celgene, Novartis, Roche. © 2022 Elsevier Ltd
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 47
Typ av publikation
tidskriftsartikel (40)
forskningsöversikt (7)
Typ av innehåll
refereegranskat (44)
övrigt vetenskapligt/konstnärligt (3)
Författare/redaktör
Zetterberg, Henrik, ... (9)
Hansson, Oskar (6)
Blennow, Kaj, 1958 (5)
Norrving, Bo (4)
Orešič, Matej, 1967- (4)
Ercole, A (3)
visa fler...
Nordberg, A (3)
Hankey, Graeme J. (3)
Hutchinson, P (3)
Dubois, B (3)
Dichgans, Martin (3)
Koskinen, Lars-Owe D ... (3)
Mead, Gillian (3)
Brorsson, Camilla (3)
Sundström, Nina (3)
Büki, Andras, 1966- (3)
Clark, D. (2)
Jain, S. (2)
Galasko, D (2)
Haagsma, JA (2)
Mondello, S (2)
Polinder, S (2)
Rothwell, Peter M. (2)
Piehl, F (2)
Nelson, D. (2)
Abrams, M (2)
Stibrant Sunnerhagen ... (2)
Lundström, Erik, 196 ... (2)
Lycke, Jan, 1956 (2)
Kolias, A (2)
Piehl, Fredrik (2)
Feigin, Valery L. (2)
Blennow, K (2)
Teunissen, Charlotte ... (2)
Wilson, L (2)
Levin, J (2)
Menon, David K. (2)
Svenningsson, Anders (2)
Zeiler, FA (2)
Gupta, D. (2)
Ossenkoppele, Rik (2)
Frisoni, G. B. (2)
Fitzgerald, M. (2)
Andelic, N (2)
Citerio, G (2)
van der Jagt, M (2)
Cooper, DJ (2)
Citerio, Giuseppe (2)
Bejanin, A. (2)
Rosand, J. (2)
visa färre...
Lärosäte
Karolinska Institutet (25)
Göteborgs universitet (15)
Lunds universitet (11)
Umeå universitet (7)
Örebro universitet (6)
Uppsala universitet (5)
visa fler...
Linköpings universitet (2)
Stockholms universitet (1)
Mittuniversitetet (1)
Högskolan i Skövde (1)
Högskolan Dalarna (1)
visa färre...
Språk
Engelska (47)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (37)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy