SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Arias Veluska) "

Sökning: WFRF:(Arias Veluska)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Arias, Veluska, et al. (författare)
  • Forecasting linear aliphatic copolyester degradation through modular block design
  • 2016
  • Ingår i: Polymer degradation and stability. - : Elsevier. - 0141-3910 .- 1873-2321. ; 130, s. 58-67
  • Tidskriftsartikel (refereegranskat)abstract
    • The development of efficient methods to predict the degradation of renewable polymeric materials is continuously sought in the field of polymer science. Herein, we present a modular build-up approach to create polyester-based materials with forecasted degradation rates based on the hydrolysis of the constituent polymer blocks. This involved the strategic combination of critical factors affecting polyester hydrolysis, i.e. hydrophobicity and degree of crystallinity. The starting point of this method was a toolbox of polymers with different hydrophobicities and degrees of crystallinity, as well as an understanding of their inherent differences in hydrolysis rate. Knowledge of the hydrolysis of each polymer block module enabled the prediction of the overall degradation behavior of the constructed copolymers. Taking advantage of the primary factors that affect polymer degradation, block copolymers could be independently designed to incorporate soft or rigid and faster or slower degradation properties. This approach generated a shift for how molecular design can be used to predict the degradation behavior of intended materials for different applications.
  •  
3.
  • Arias, Veluska, et al. (författare)
  • Homocomposites of Polylactide (PLA) with Induced Interfacial Stereocomplex Crystallites
  • 2015
  • Ingår i: ACS Sustainable Chemistry and Engineering. - : American Chemical Society (ACS). - 2168-0485. ; 3:9, s. 2220-2231
  • Tidskriftsartikel (refereegranskat)abstract
    • The demand for “green” degradable composite materials increases with growing environmental awareness. The key challenge is achieving the preferred physical properties and maintaining their eco-attributes in terms of the degradability of the matrix and the filler. Herein, we have designed a series of “green” homocomposites materials based purely on polylactide (PLA) polymers with different structures. Film-extruded homocomposites were prepared by melt-blending PLA matrixes (which had different degrees of crystallinity) with PLLA and PLA stereocomplex (SC) particles. The PLLA and SC particles were spherical and with 300–500 nm size. Interfacial crystalline structures in the form of stereocomplexes were obtained for certain particulate-homocomposite formulations. These SC crystallites were found at the particle/matrix interface when adding PLLA particles to a PLA matrix with d-lactide units, as confirmed by XRD and DSC data analyses. For all homocomposites, the PLLA and SC particles acted as nucleating agents and enhanced the crystallization of the PLA matrixes. The SC particles were more rigid and had a higher Young’s modulus compared with the PLLA particles. The mechanical properties of the homocomposites varied with particle size, rigidity, and the interfacial adhesion between the particles and the matrix. An improved tensile strength in the homocomposites was achieved from the interfacial stereocomplex formation. Hereafter, homocomposites with tunable crystalline arrangements and subsequently physical properties, are promising alternatives in strive for eco-composites and by this, creating materials that are completely degradable and sustainable.
  •  
4.
  • Arias, Veluska, et al. (författare)
  • Nano-Stereocomplexation of Polylactide (PLA) Spheres by Spray Droplet Atomization
  • 2014
  • Ingår i: Macromolecular rapid communications. - : Wiley. - 1022-1336 .- 1521-3927. ; 35:22, s. 1949-1953
  • Tidskriftsartikel (refereegranskat)abstract
    • A direct, efficient, and scalable method to prepare stereocomplexed polylactide (PLA)-based nanoparticles (NPs) is achieved. By an appropriate combination of fabrication parameters, NPs with controlled shape and crystalline morphology are obtained and even pure PLA stereocomplexes (PLASC) are successfully prepared using the spray-drying technology. The formed particles of varying D- and L-LA content have an average size of approximate to 400 nm, where the smallest size is obtained for PLA50, which has an equimolar composition of PLLA and PDLA in solution. Raman spectra of the particles show the typical shifts for PLASC in PLA50, and thermal analysis indicates the presence of pure stereocomplexation, with only one melting peak at 226 degrees C. Topographic images of the particles exhibit a single phase with different surface roughness in correlation with the thermal analysis. A high yield of spherically shaped particles is obtained. The results clearly provide a proficient method for achieving PLASC NPs that are expected to function as renewable materials in PLA-based nanocomposites and potentially as more stable drug delivery carriers.
  •  
5.
  • Arias, Veluska, et al. (författare)
  • Polylactides with "green" plasticizers : Influence of isomer composition
  • 2013
  • Ingår i: Journal of Applied Polymer Science. - : Wiley. - 0021-8995 .- 1097-4628. ; 130:4, s. 2962-2970
  • Tidskriftsartikel (refereegranskat)abstract
    • Synthesized polylactides (PLA) with different D-isomer contents in the polymer chain were melt-blended with a series of green plasticizers by extrusion. Mechanical and thermal properties as well as the morphology of the plasticized materials were characterized to demonstrate how the combination of PLA with different D-contents and plasticizer controls the material properties. After addition of acetyl tributyl citrate (ATC), the elongation at break for PLA with a low D-isomer content was twice as high as that for PLAs with high D-isomer contents. Similar variations in the plasticization effect on the PLAs were also observed with the other plasticizers used, glyceryl triacetate (GTA), glycerol trihexanoate (GTH) and polyethylene glycol (PEG). In order to continue with the development of renewable polymers in packaging applications, the interrelation between a plasticizer and a specific polymer needs to be understood.
  •  
6.
  • Arias, Veluska, et al. (författare)
  • Selective degradation in aliphatic block copolyesters by controlling the heterogeneity of the amorphous phase
  • 2015
  • Ingår i: Polymer Chemistry. - : Royal Society of Chemistry (RSC). - 1759-9954 .- 1759-9962. ; 6:17, s. 3271-3282
  • Tidskriftsartikel (refereegranskat)abstract
    • Controlling the course of the degradation of aliphatic polyesters is a key question when designing new degradable materials. It is shown herein that it is possible to predetermine the degradation path of aliphatic block copolyesters by controlling the heterogeneity of the amorphous phase, which in turn regulates the availability of the hydrolyzable groups in the polyester backbone. To demonstrate these processes, we synthesized a set of degradable materials based on poly(l-lactide) (PLLA), poly(ε-decalactone) (PεDL) and poly(ε-caprolactone) (PCL) with varying compositions. The materials were subjected to hydrolysis for a six months period. The materials composed of PLLA and PεDL exhibited a heterogeneous amorphous phase, whereas the materials composed of PCL and PεDL presented a more homogeneous phase. The kinetics of the degradation indicated that the slowest degradation rate was observed for the more homogeneous compositions. The degradation path of the heterogeneous amorphous phase materials was driven by a random chain scission process, whereas the more homogeneous composition presented a degradation path driven by a more selective chain scission. The confinement of the amorphous phase by the more hydrolytically stable PεDL permitted a selective degradation of the available hydrolyzable groups. The random and more selective chain scission processes were further verified by using previously determined molecular modeling based on Monte Carlo procedures. Topographical images and thermal analyses of the materials under different degradation periods correlated with the proposed degradation paths. Detailed insights and the ability to predetermine the degradation pathways of aliphatic polyesters will continue to expand the great potential of renewable materials and their use in specific applications for a future sustainable society.
  •  
7.
  •  
8.
  • Arias, Veluska, et al. (författare)
  • Toward "Green" Hybrid Materials : Core-Shell Particles with Enhanced Impact Energy Absorbing Ability
  • 2016
  • Ingår i: ACS Sustainable Chemistry and Engineering. - : American Chemical Society (ACS). - 2168-0485. ; 4:7, s. 3757-3765
  • Tidskriftsartikel (refereegranskat)abstract
    • Restrained properties of "green" degradable products drive the creation of materials with innovative structures and retained eco-attributes. Herein, we introduce the creation of impact modifiers in the form of core-shell (CS) particles toward the creation of "green" composite materials. Particles with CS structure constituted of PLA stereocomplex (PLASC) and a rubbery phase of poly(epsilon-caprolactone-co-D,L-lactide) (P[CL-co-LA]) were successfully achieved by spray droplet atomization. A synergistic association of the soft P[CL-co-LA] and hard PLASC domains in the core-shell structure induced unique thermo-mechanical effects on the PLA-based composites. The core-shell particles enhanced the crystallization of PLA matrices by acting as nucleating agents. The core-shell particles functioned efficiently as impact modifiers with minimal effect on the composites stiffness and strength. These findings provide a new platform for scalable design of polymeric-based structures to be used in the creation of advanced degradable materials.
  •  
9.
  • Arias, Veluska, 1988- (författare)
  • Towards a retro-structural design of degradable aliphatic polyester-based materials
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The increasing amount of accumulated plastic waste has led to a continuous search for degradable materials for use in a variety of applications. This eco-friendly approach contemplates the use of degradable alternatives to the inert polymers (the main components in plastics) used today and further engineering of their degradation pathways. The most extensively investigated group of degradable polymers is the poly(α-esters), due to their tailorable thermo-mechanical properties and degradability. However, degradation of these polymers can be undesirable or desirable depending on the time of occurrence. Thus, by controlling the degradation process, it is possible to predict and, consequently, tailor the materials’ lifetime for specific needs.Herein, a methodology to allow for a retro-structural design of degradable materials based on aliphatic polyesters is presented. Insights into the degradation behavior of the systems were obtained and further translated to different levels of structural designs to achieve desired macroscopic properties in terms of performance and degradability. Several combinational strategies based on polymer morphology, polymer structure and block design, were developed. As a result, homopolymers and block copolymers with projected degradation for different instances were created. Apart from bulk modifications in the material, it was shown that it was possible to tailor degradation pathways by means of specific interactions between polymer pairs in block copolymers and also in polymer blends. Furthermore, well-defined structure-property relationships are crucial when designing materials with specific degradability properties. In light of this, degradable polyester-based particles with tunable crystalline structures and, hence, physical properties, were developed. These particles proved to function as reinforcing agents in the creation of “green” homocomposites. These composites are promising alternatives in the search for materials that are completely degradable and sustainable.
  •  
10.
  • Arias, Veluska, et al. (författare)
  • Tuning the Degradation Profiles of Poly(L-lactide)-Based Materials through Miscibility
  • 2014
  • Ingår i: Biomacromolecules. - : American Chemical Society (ACS). - 1525-7797 .- 1526-4602. ; 15:1, s. 391-402
  • Tidskriftsartikel (refereegranskat)abstract
    • The effective use of biodegradable polymers relies on the ability to control the onset of and time needed for degradation. Preferably, the material properties should be retained throughout the intended time frame, and the material should degrade in a rapid and controlled manner afterward. The degradation profiles of polyester materials were controlled through their miscibility. Systems composed of PLLA blended with poly[(R,S)-3-hydroxybutyrate] (a-PHB) and polypropylene adipate (PPA) with various molar masses were prepared through extrusion. Three different systems were used: miscible (PLLA/a-PHB5 and PLLA/a-PHB20), partially miscible (PLLA/PPA5/comp and PLLA/PPA20/comp), and immiscible (PLLA/PPA5 and PLLA/PPA20) blends. These blends and their respective homopolymers were hydrolytically degraded in water at 37 degrees C for up to I year. The blends exhibited entirely different degradation profiles but showed no diversity between the total degradation times of the materials. PLLA presented a two-stage degradation profile with a rapid decrease in molar mass during the early stages of degradation, similar to the profile of PLLA/a-PHB5. PLLA/a-PHB20 presented a single, constant linear degradation profile. PLLA/PPA5 and PLLA/PPA20 showed completely opposing degradation profiles relative to PLLA, exhibiting a slow initial phase and a rapid decrease after a prolonged degradation time. PLLA/PPA5/comp and PLLA/PPA20/comp had degradation profiles between those of the miscible and the immiscible blends. The molar masses of the materials were approximately the same after 1 year of degradation despite their different profiles. The blend composition and topographical images captured at the last degradation time point demonstrate that the blending component was not leached out during the period of study. The hydrolytic stability of degradable polyester materials can be tailored to obtain different and predetermined degradation profiles for future applications.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy