SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Chagin Andrei S.) srt2:(2015-2019)"

Sökning: WFRF:(Chagin Andrei S.) > (2015-2019)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Kaucka, Marketa, et al. (författare)
  • Oriented clonal cell dynamics enables accurate growth and shaping of vertebrate cartilage
  • 2017
  • Ingår i: eLIFE. - : Elife Sciences Publications LTD. - 2050-084X. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Cartilaginous structures are at the core of embryo growth and shaping before the bone forms. Here we report a novel principle of vertebrate cartilage growth that is based on introducing transversally-oriented clones into pre-existing cartilage. This mechanism of growth uncouples the lateral expansion of curved cartilaginous sheets from the control of cartilage thickness, a process which might be the evolutionary mechanism underlying adaptations of facial shape. In rod-shaped cartilage structures (Meckel, ribs and skeletal elements in developing limbs), the transverse integration of clonal columns determines the well-defined diameter and resulting rod-like morphology. We were able to alter cartilage shape by experimentally manipulating clonal geometries. Using in silico modeling, we discovered that anisotropic proliferation might explain cartilage bending and groove formation at the macro-scale.
  •  
3.
  • Kaucka, Marketa, et al. (författare)
  • Analysis of neural crest-derived clones reveals novel aspects of facial development
  • 2016
  • Ingår i: Science Advances. - : American Association for the Advancement of Science. - 2375-2548. ; 2:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Cranial neural crest cells populate the future facial region and produce ectomesenchyme-derived tissues, such as cartilage, bone, dermis, smooth muscle, adipocytes, and many others. However, the contribution of individual neural crest cells to certain facial locations and the general spatial clonal organization of the ectomesenchyme have not been determined. We investigated how neural crest cells give rise to clonally organized ectomesenchyme and how this early ectomesenchyme behaves during the developmental processes that shape the face. Using a combination of mouse and zebrafish models, we analyzed individual migration, cell crowd movement, oriented cell division, clonal spatial overlapping, and multilineage differentiation. The early face appears to be built from multiple spatially defined overlapping ectomesenchymal clones. During early face development, these clones remain oligopotent and generate various tissues in a given location. By combining clonal analysis, computer simulations, mouse mutants, and live imaging, we show that facial shaping results from an array of local cellular activities in the ectomesenchyme. These activities mostly involve oriented divisions and crowd movements of cells during morphogenetic events. Cellular behavior that can be recognized as individual cell migration is very limited and short-ranged and likely results from cellular mixing due to the proliferation activity of the tissue. These cellular mechanisms resemble the strategy behind limb bud morphogenesis, suggesting the possibility of common principles and deep homology between facial and limb outgrowth.
  •  
4.
  • Vuppalapati, Karuna K, et al. (författare)
  • Targeted Deletion of Autophagy Genes Atg5 or Atg7 in the Chondrocytes Promotes Caspase-Dependent Cell Death and Leads to Mild Growth Retardation.
  • 2015
  • Ingår i: Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research. - : Wiley. - 1523-4681. ; 30:12, s. 2249-2261
  • Tidskriftsartikel (refereegranskat)abstract
    • Longitudinal bone growth takes place in epiphyseal growth plates located in the ends of long bones. The growth plate consists of chondrocytes traversing from the undifferentiated (resting zone) to the terminally differentiated (hypertrophic zone) stage. Autophagy is an intracellular catabolic process of lysosome-dependent recycling of intracellular organelles and protein complexes. Autophagy is activated during nutritionally depleted or hypoxic conditions in order to facilitate cell survival. Chondrocytes in the middle of the growth plate are hypoxic and nutritionally depleted owing to the avascular nature of the growth plate. Accordingly, autophagy may facilitate their survival. To explore the role of autophagy in chondrocyte survival and constitutional bone growth, we generated mice with cartilage-specific ablation of either Atg5 (Atg5cKO) or Atg7 (Atg7cKO) by crossing Atg5 or Atg7 floxed mice with cartilage-specific collagen type 2 promoter-driven Cre. Both Atg5cKO and Atg7cKO mice showed growth retardation associated with enhanced chondrocyte cell death and decreased cell proliferation. Similarly, inhibition of autophagy by Bafilomycin A1 (Baf) or 3-methyladenine (3MA) promoted cell death in cultured slices of human growth plate tissue. To delineate the underlying mechanisms we employed ex vivo cultures of mouse metatarsal bones and RCJ3.IC5.18 rat chondrogenic cell line. Baf or 3MA impaired metatarsal bone growth associated with processing of caspase-3 and massive cell death. Similarly, treatment of RCJ3.IC5.18 chondrogenic cells by Baf also showed massive cell death and caspase-3 cleavage. This was associated with activation of caspase-9 and cytochrome C release. Altogether, our data suggest that autophagy is important for chondrocyte survival, and inhibition of this process leads to stunted growth and caspase-dependent death of chondrocytes. © 2015 American Society for Bone and Mineral Research.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy