SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Goldwurm Stefano) "

Sökning: WFRF:(Goldwurm Stefano)

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Azevedo, Carla, et al. (författare)
  • Generation of an induced pluripotent stem cell line (CSC-32) from a patient with Parkinson's disease carrying a heterozygous variation p.A53T in the SNCA gene
  • 2020
  • Ingår i: Stem Cell Research. - : Elsevier BV. - 1873-5061. ; 43
  • Tidskriftsartikel (refereegranskat)abstract
    • Here, we describe the generation of an induced pluripotent stem cell (iPSC) line, from a male patient diagnosed with Parkinson's disease (PD). The patient carries a heterozygous variation p.A53T in the SNCA gene. Skin fibroblasts were reprogrammed using the non-integrating Sendai virus technology to deliver OCT3/4, SOX2, c-MYC and KLF4 factors. The generated iPSC line (CSC-32) preserved the mutation, displayed expression of common pluripotency markers, differentiated into derivatives of the three germ layers, and exhibited a normal karyotype. The clone CSC-32B is presented thereafter; it can be used to study the mechanisms underlying PD pathogenesis.
  •  
2.
  • Cartelli, Daniele, et al. (författare)
  • Parkin absence accelerates microtubule aging in dopaminergic neurons
  • 2018
  • Ingår i: Neurobiology of Aging. - : Elsevier BV. - 0197-4580. ; 61, s. 66-74
  • Tidskriftsartikel (refereegranskat)abstract
    • Loss-of-function caused by mutations in the parkin gene (PARK2) lead to early-onset familial Parkinson's disease. Recently, mechanistic studies proved the ability of parkin in regulating mitochondria homeostasis and microtubule (MT) stability. Looking at these systems during aging of PARK2 knockout mice, we found that loss of parkin induced an accelerated (over)acetylation of MT system both in dopaminergic neuron cell bodies and fibers, localized in the substantia nigra and corpus striatum, respectively. Interestingly, in PARK2 knockout mice, changes of MT stability preceded the alteration of mitochondria transport. Moreover, in-cell experiments confirmed that loss of parkin affects mitochondria mobility and showed that this defect depends on MT system as it is rescued by paclitaxel, a well-known MT-targeted agent. Furthermore, both in PC12 neuronal cells and in patients' induced pluripotent stem cell–derived midbrain neurons, we observed that parkin deficiencies cause the fragmentation of stable MTs. Therefore, we suggest that parkin acts as a regulator of MT system during neuronal aging, and we endorse the hypothesis that MT dysfunction may be crucial in the pathogenesis of Parkinson's disease.
  •  
3.
  • Chumarina, Margarita, et al. (författare)
  • Cellular alterations identified in pluripotent stem cell-derived midbrain spheroids generated from a female patient with progressive external ophthalmoplegia and parkinsonism who carries a novel variation (p.Q811R) in the POLG1 gene
  • 2019
  • Ingår i: Acta Neuropathologica Communications. - : Springer Science and Business Media LLC. - 2051-5960. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Variations in the POLG1 gene encoding the catalytic subunit of the mitochondrial DNA polymerase gamma, have recently been associated with Parkinson's disease (PD), especially in patients diagnosed with progressive external ophthalmoplegia (PEO). However, the majority of the studies reporting this association mainly focused on the genetic identification of the variation in POLG1 in PD patient primary cells, and determination of mitochondrial DNA copy number, providing little information about the cellular alterations existing in patient brain cells, in particular dopaminergic neurons. Therefore, through the use of induced pluripotent stem cells (iPSCs), we assessed cellular alterations in novel p.Q811R POLG1 (POLG1Q811R) variant midbrain dopaminergic neuron-containing spheroids (MDNS) from a female patient who developed early-onset PD, and compared them to cultures derived from a healthy control of the same gender. Both POLG1 variant and control MDNS contained functional midbrain regionalized TH/FOXA2-positive dopaminergic neurons, capable of releasing dopamine. Western blot analysis identified the presence of high molecular weight oligomeric alpha-synuclein in POLG1Q811R MDNS compared to control cultures. In order to assess POLG1Q811R-related cellular alterations within the MDNS, we applied mass-spectrometry based quantitative proteomic analysis. In total, 6749 proteins were identified, with 61 significantly differentially expressed between POLG1Q811R and control samples. Pro-And anti-inflammatory signaling and pathways involved in energy metabolism were altered. Notably, increased glycolysis in POLG1Q811R MDNS was suggested by the increase in PFKM and LDHA levels and confirmed using functional analysis of glycolytic rate and oxygen consumption levels. Our results validate the use of iPSCs to assess cellular alterations in relation to PD pathogenesis, in a unique PD patient carrying a novel p.Q811R variation in POLG1, and identify several altered pathways that may be relevant to PD pathogenesis.
  •  
4.
  • Chung, Sun Ju, et al. (författare)
  • Alpha-Synuclein Repeat Variants and Survival in Parkinson's Disease
  • 2014
  • Ingår i: Movement Disorders. - : Wiley. - 0885-3185. ; 29:8, s. 1053-1057
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: To determine whether alpha-synuclein dinucleotide repeat (REP1) genotypes are associated with survival in Parkinson's disease (PD). Methods: Investigators from the Genetic Epidemiology of Parkinson's Disease Consortium provided REP1 genotypes and baseline and follow-up clinical data for cases. The primary outcome was time to death. Cox proportional hazards regression models were used to assess the association of REP1 genotypes with survival. Results: Twenty-one sites contributed data for 6,154 cases. There was no significant association between alpha-synuclein REP1 genotypes and survival in PD. However, there was a significant association between REP1 genotypes and age at onset of PD (hazard ratio: 1.06; 95% confidence interval: 1.01-1.10; P value = 0.01). Conclusions: In our large consortium study, alpha-synuclein REP1 genotypes were not associated with survival in PD. Further studies of alpha-synuclein's role in disease progression and long-term outcomes are needed. (C) 2014 International Parkinson and Movement Disorder Society
  •  
5.
  • Djelloul, Mehdi, et al. (författare)
  • Alpha-Synuclein Expression in the Oligodendrocyte Lineage: an In Vitro and In Vivo Study Using Rodent and Human Models.
  • 2015
  • Ingår i: Stem Cell Reports. - : Elsevier BV. - 2213-6711. ; 5:2, s. 174-184
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, we sought evidence for alpha-synuclein (ASYN) expression in oligodendrocytes, as a possible endogenous source of ASYN to explain its presence in glial inclusions found in multiple system atrophy (MSA) and Parkinson's disease (PD). We identified ASYN in oligodendrocyte lineage progenitors isolated from the rodent brain, in oligodendrocytes generated from embryonic stem cells, and in induced pluripotent stem cells produced from fibroblasts of a healthy individual and patients diagnosed with MSA or PD, in cultures in vitro. Notably, we observed a significant decrease in ΑSYN during oligodendrocyte maturation. Additionally, we show the presence of transcripts in PDGFRΑ/CD140a(+) cells and SOX10(+) oligodendrocyte lineage nuclei isolated by FACS from rodent and human healthy and diseased brains, respectively. Our work identifies ASYN in oligodendrocyte lineage cells, and it offers additional in vitro cellular models that should provide significant insights of the functional implication of ASYN during oligodendrocyte development and disease.
  •  
6.
  • Gustavsson, Nadja, et al. (författare)
  • Generation of an induced pluripotent stem cell line (CSC-46) from a patient with Parkinson's disease carrying a novel p.R301C mutation in the GBA gene
  • 2019
  • Ingår i: Stem Cell Research. - : Elsevier BV. - 1873-5061. ; 34
  • Tidskriftsartikel (refereegranskat)abstract
    • Mutations in the glucocerebrosidase (GBA) gene have been associated with the development of Parkinson's disease (PD). An induced pluripotent stem cell (iPSC) line was generated from a 60-year old patient diagnosed with PD and carrying a new mutation variant p.R301C in GBA. Using non-integrating Sendai virus-based technology, we utilized OCT3/4, SOX2, c-MYC and KLF4 transcription factors to reprogram skin fibroblasts into iPSCs. The generated iPSC line retained the mutation, displayed expression of common pluripotency markers, differentiated into the three germ layers, and exhibited normal karyotype. The iPSC line can be further used for studying PD pathogenesis.
  •  
7.
  • Iacomussi, Sofia, et al. (författare)
  • Governance of Access in Biobanking: The Case of Telethon Network of Genetic Biobanks
  • 2021
  • Ingår i: Biopreservation and Biobanking. - : Mary Ann Liebert. - 1947-5535 .- 1947-5543. ; 19:6, s. 483-492
  • Tidskriftsartikel (refereegranskat)abstract
    • The discussion concerning the measure of the quality of a biobank should focus not only on the number of stored samples and their quality but also on the assessment of their access arrangements and governance. This article aims at contributing to the ongoing debate on samples and data access governance in biobanking by presenting the case of the Telethon Network of Genetic Biobanks (TNGB). We attempt to contribute to the need for clear and available access criteria and harmonization in access arrangements to maximize the influence of biobanks in the progress of biomedical research. We reviewed all the sample requests submitted to the TNGB from 2008 to 2020, focusing on those rejected by the Access Committee and the reasons behind the rejections. The analysis of the reasons behind the rejected requests allowed us to analyze how those relate to the issues of scientific misconduct, prioritization, and noncompliance with the biobank's mission. We discuss those issues in light of the actions and motivations used by TNGB in the access decision-making process. Based on this analysis, we suggest that a cross-implementation of a checklist for access assessment would improve the whole access process, ensuring a more transparent and smoother governance. Finally, we conclude that the TNGB's Charter and approach toward access governance could contribute as an important reference point to deal with the issues that have emerged in the international discussion on the topic.
  •  
8.
  • Marote, Ana, et al. (författare)
  • Generation of an induced pluripotent stem cell line (CSC-41) from a Parkinson's disease patient carrying a p.G2019S mutation in the LRRK2 gene
  • 2018
  • Ingår i: Stem Cell Research. - : Elsevier BV. - 1873-5061. ; 28, s. 44-47
  • Tidskriftsartikel (refereegranskat)abstract
    • The leucine-rich repeat kinase 2 (LRRK2) p.G2019S mutation is the most common genetic cause of Parkinson's disease (PD). An induced pluripotent stem cell (iPSC) line CSC-41 was generated from a 75-year old patient diagnosed with PD caused by a p.G2019S mutation in LRRK2. Skin fibroblasts were reprogrammed using a non-integrating Sendai virus-based technology to deliver OCT3/4, SOX2, c-MYC and KLF4 transcription factors. The generated iPSC line exhibits expression of common pluripotency markers, differentiates into the three germ layers and has a normal karyotype. The iPSC line can be used to explore the association between LRRK2 mutation and PD.
  •  
9.
  • Marote, Ana, et al. (författare)
  • Generation of an induced pluripotent stem cell line (CSC-44) from a Parkinson's disease patient carrying a compound heterozygous mutation (c.823C > T and EX6 del) in the PARK2 gene
  • 2018
  • Ingår i: Stem Cell Research. - : Elsevier BV. - 1873-5061. ; 27, s. 90-94
  • Tidskriftsartikel (refereegranskat)abstract
    • Mutations in the PARK2 gene, which encodes PARKIN, are the most frequent cause of autosomal recessive Parkinson's disease (PD). We report the generation of an induced pluripotent stem cell (iPSC) line from a 78-year-old patient carrying a compound heterozygous mutation (c.823C > T and EX6del) in the PARK2 gene. Skin fibroblasts were reprogrammed using the non-integrating Sendai virus technology to deliver OCT3/4, SOX2, c-MYC and KLF4 factors. The generated cell line CSC-44 exhibits expression of common pluripotency markers, in vitro differentiation into the three germ layers and normal karyotype. This iPSC line can be used to explore the association between PARK2 mutations and PD.
  •  
10.
  • Marote, Ana, et al. (författare)
  • Generation of an integration-free induced pluripotent stem cell line (CSC-43J) from a patient with sporadic Parkinson's disease
  • 2018
  • Ingår i: Stem Cell Research. - : Elsevier BV. - 1873-5061. ; 27, s. 82-85
  • Tidskriftsartikel (refereegranskat)abstract
    • An induced pluripotent stem cell (iPSC) line was generated from a 36-year-old patient with sporadic Parkinson's disease (PD). Skin fibroblasts were reprogrammed using the non-integrating Sendai virus technology to deliver OCT3/4, SOX2, c-MYC and KLF4 factors. The generated cell line (CSC-43) exhibits expression of common pluripotency markers, in vitro differentiation into three germ layers and normal karyotype. This iPSC line can be used to study the mechanisms underlying the development of PD.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy