SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Heslegrave A) srt2:(2021)"

Sökning: WFRF:(Heslegrave A) > (2021)

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Graham, N. S. N., et al. (författare)
  • Axonal marker neurofilament light predicts long-term outcomes and progressive neurodegeneration after traumatic brain injury
  • 2021
  • Ingår i: Science Translational Medicine. - : American Association for the Advancement of Science (AAAS). - 1946-6234 .- 1946-6242. ; 13:613
  • Tidskriftsartikel (refereegranskat)abstract
    • Axonal injury is a key determinant of long-term outcomes after traumatic brain injury (TBI) but has been difficult to measure clinically. Fluid biomarker assays can now sensitively quantify neuronal proteins in blood. Axonal components such as neurofilament light (NfL) potentially provide a diagnostic measure of injury. In the multicenter BIO-AX-TBI study of moderate-severe TBI, we investigated relationships between fluid biomarkers, advanced neuroimaging, and clinical outcomes. Cerebral microdialysis was used to assess biomarker concentrations in brain extracellular fluid aligned with plasma measurement. An experimental injury model was used to validate biomarkers against histopathology. Plasma NfL increased after TBI, peaking at 10 days to 6 weeks but remaining abnormal at 1 year. Concentrations were around 10 times higher early after TBI than in controls (patients with extracranial injuries). NfL concentrations correlated with diffusion MRI measures of axonal injury and predicted white matter neurodegeneration. Plasma TAU predicted early gray matter atrophy. NfL was the strongest predictor of functional outcomes at 1 year. Cerebral microdialysis showed that NfL concentrations in plasma and brain extracellular fluid were highly correlated. An experimental injury model confirmed a dose-response relationship of histopathologically defined axonal injury to plasma NfL. In conclusion, plasma NfL provides a sensitive and clinically meaningful measure of axonal injury produced by TBI. This reflects the extent of underlying damage, validated using advanced MRI, cerebral microdialysis, and an experimental model. The results support the incorporation of NfL sampling subacutely after injury into clinical practice to assist with the diagnosis of axonal injury and to improve prognostication.
  •  
2.
  • Benjamin, L. A., et al. (författare)
  • Antiphospholipid antibodies and neurological manifestations in acute COVID-19: A single-centre cross-sectional study
  • 2021
  • Ingår i: Eclinicalmedicine. - : Elsevier BV. - 2589-5370. ; 39
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: A high prevalence of antiphospholipid antibodies has been reported in case series of patients with neurological manifestations and COVID-19; however, the pathogenicity of antiphospholipid antibodies in COVID-19 neurology remains unclear. Methods: This single-centre cross-sectional study included 106 adult patients: 30 hospitalised COVID-neurological cases, 47 non-neurological COVID-hospitalised controls, and 29 COVID-non-hospitalised controls, recruited between March and July 2020. We evaluated nine antiphospholipid antibodies: anticardiolipin antibodies [aCL] IgA, IgM, IgG; anti-beta-2 glycoprotein-1 [a beta(2)GPI] IgA, IgM, IgG; anti-phosphatidylserine/prothrombin [aPS/PT] IgM, IgG; and anti-domain I b2GPI (aD1 beta 2GPI) IgG. Findings: There was a high prevalence of antiphospholipid antibodies in the COVID-neurological (73.3%) and non-neurological COVID-hospitalised controls (76.6%) in contrast to the COVID-non-hospitalised controls (48.2%). aPS/PT IgG titres were significantly higher in the COVID-neurological group compared to both control groups (p < 0.001). Moderate-high titre of aPS/PT IgG was found in 2 out of 3 (67%) patients with acute disseminated encephalomyelitis [ADEM]. aPS/PT IgG titres negatively correlated with oxygen requirement (FiO(2) R=-0.15 p = 0.040) and was associated with venous thromboembolism (p = 0.043). In contrast, aCL IgA (p < 0.001) and IgG (p < 0.001) was associated with non-neurological COVID-hospitalised controls compared to the other groups and correlated positively with D-dimer and creatinine but negatively with FiO(2). Interpretation: Our findings show that aPS/PT IgG is associated with COVID-19-associated ADEM. In contrast, aCL IgA and IgG are seen much more frequently in non-neurological hospitalised patients with COVID-19. Characterisation of antiphospholipid antibody persistence and potential longitudinal clinical impact are required to guide appropriate management. (C) 2021 The Author(s). Published by Elsevier Ltd.
  •  
3.
  • Alagaratnam, J., et al. (författare)
  • No evidence of neuronal damage as measured by neurofilament light chain in a HIV cure study utilising a kick-and-kill approach
  • 2021
  • Ingår i: Journal of Virus Eradication. - : Elsevier BV. - 2055-6640. ; 7:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: HIV-remission strategies including kick-and-kill could induce viral transcription and immune activation in the central nervous system, potentially causing neuronal injury. We investigated the impact of kick-and-kill on plasma neurofilament light (NfL), a marker of neuro-axonal injury, in RIVER trial participants commencing antiretroviral treatment (ART) during primary infection and randomly allocated to ART-alone or kick-and-kill (ART + vaccination + vorinostat (ART + V + V)). Design: Sub-study measuring serial plasma NfL concentrations. Methods: Plasma NfL (using Simoa digital immunoassay), plasma HIV-1 RNA (using single-copy assay) and total HIV-1 DNA (using quantitative polymerase chain reaction in peripheral CD4(+) T-cells) were measured at randomisation (following >= 22 weeks ART), week 12 (on final intervention day in ART + V + V) and week 18 post randomisation. HIV-specific T-cells were quantified by intracellular cytokine staining at randomisation and week 12. Differences in plasma NfL longitudinally and by study arm were analysed using mixed models and Student's t-test. Associations with plasma NfL were assessed using linear regression and rank statistics. Results: At randomisation, 58 male participants had median age 32 years and CD4(+) count 696 cells/mu L. No significant difference in plasma NfL was seen longitudinally and by study arm, with median plasma NfL (pg/mL) in ART-only vs ART + V + V: 7.4 vs 6.4, p = 0.16 (randomisation), 8.0 vs 6.9, p = 0.22 (week 12) and 7.1 vs 6.8, p = 0.74 (week 18). Plasma NfL did not significantly correlate with plasma HIV-1 RNA and total HIV-1 DNA concentration in peripheral CD4(+) T-cells at any timepoint. While higher HIV-specific T-cell responses were seen at week 12 in ART + V + V, there were no significant correlations with plasma NfL. In multivariate analysis, higher plasma NfL was associated with older age, higher CD8(+) count and lower body mass index. Conclusions: Despite evidence of vaccine-induced HIV-specific T-cell responses, we observed no evidence of increased neuro-axonal injury using plasma NfL as a biomarker up to 18 weeks following kick-and-kill, compared with ART-only.
  •  
4.
  • Keshavan, A., et al. (författare)
  • Concordance of csf measures of alzheimer’s pathology with amyloid pet status in a preclinical cohort: A comparison of lumipulse and established immunoassays
  • 2021
  • Ingår i: Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring. - : Wiley. - 2352-8729. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • INTRODUCTION: We assessed the concordance of cerebrospinal fluid (CSF) amyloid beta (Aβ) and tau measured on the fully automated Lumipulse platform with presymptomatic Alzheimer’s disease (AD) pathology on amyloid positron emission tomography (PET). METHODS: In 72 individuals from the Insight 46 study, CSF Aβ40, Aβ42, total tau (t-tau), and phosphorylated tau at site 181 (p-tau181) were measured using Lumipulse, INNOTEST, and Meso Scale Discovery (MSD) assays and inter-platform Pearson correlations derived. Lumipulse Aβ42 measures were adjusted to incorporate standardization to certified reference materials. Logistic regressions and receiver operating characteristics analysis generated CSF cut-points optimizing concordance with18F florbetapir amyloid PET status (n = 63). RESULTS: Measurements of CSF Aβ, p-tau181, and their ratios correlated well across platforms (r 0.84 to 0.94, P < .0001); those of t-tau and t-tau/Aβ42 correlated moderately (r 0.57 to 0.79, P < .0001). The best concordance with amyloid PET (100% sensitivity and 94% specificity) was afforded by cut-points of 0.075 for Lumipulse Aβ42/Aβ40, 0.087 for MSD Aβ42/Aβ40 and 17.3 for Lumipulse Aβ42/p-tau181. DISCUSSION: The Lumipulse platform provides comparable sensitivity and specificity to established CSF immunoassays in identifying pre-symptomatic AD pathology. © 2020 The Authors.
  •  
5.
  • O'Connor, A., et al. (författare)
  • Plasma phospho-tau181 in presymptomatic and symptomatic familial Alzheimer's disease: a longitudinal cohort study
  • 2021
  • Ingår i: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 26, s. 5967-5976
  • Tidskriftsartikel (refereegranskat)abstract
    • Blood biomarkers have great potential to advance clinical care and accelerate trials in Alzheimer's disease (AD). Plasma phospho-tau181 (p-tau181) is a promising blood biomarker however, it is unknown if levels increase in presymptomatic AD. Therefore, we investigated the timing of p-tau181 changes using 153 blood samples from 70 individuals in a longitudinal study of familial AD (FAD). Plasma p-tau181 was measured, using an in-house single molecule array assay. We compared p-tau181 between symptomatic carriers, presymptomatic carriers, and non-carriers, adjusting for age and sex. We examined the relationship between p-tau181 and neurofilament light and estimated years to/from symptom onset (EYO), as well as years to/from actual onset in a symptomatic subgroup. In addition, we studied associations between p-tau181 and clinical severity, as well testing for differences between genetic subgroups. Twenty-four were presymptomatic carriers (mean baseline EYO -9.6 years) while 27 were non-carriers. Compared with non-carriers, plasma p-tau181 concentration was higher in both symptomatic (p < 0.001) and presymptomatic mutation carriers (p < 0.001). Plasma p-tau181 showed considerable intra-individual variability but individual values discriminated symptomatic (AUC 0.93 [95% CI 0.85-0.98]) and presymptomatic (EYO >= -7 years) (AUC 0.86 [95% CI 0.72-0.94]) carriers from non-carriers of the same age and sex. From a fitted model there was evidence (p = 0.050) that p-tau181 concentrations were higher in mutation carriers than non-carriers from 16 years prior to estimated symptom onset. Our finding that plasma p-tau181 concentration is increased in symptomatic and presymptomatic FAD suggests potential utility as an easily accessible biomarker of AD pathology.
  •  
6.
  • Austin, K., et al. (författare)
  • Serum neurofilament light concentration does not increase following exposure to low velocity football heading
  • 2021
  • Ingår i: Science and Medicine in Football. - : Informa UK Limited. - 2473-3938 .- 2473-4446. ; 5:3, s. 188-194
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: To investigate if heading frequency and impact biomechanics in a single session influence the concentration of serum neurofilament light (NF-L), a sensitive biomarker for axonal damage, up to 7 days after heading incident at ball velocities reflecting basic training drills. Methods: Forty-four males were randomized into either control (n = 8), 10 header (n = 12), 20 header (n = 12) or 40 header (n = 12) groups. Linear and angular head accelerations were quantified during heading. Venous blood samples were taken at baseline, 6 h, 24 h and 7 days after heading. Serum NF-L was quantified using Quanterix NF-L assay kit on the Simoa HD-1 Platform. Results: Serum NF-L did not alter over time (p = 0.44) and was not influenced by number of headers [p = 0.47; mean (95% CI) concentrations at baseline 6.00 pg center dot ml(-) (1) (5.00-7.00 pg center dot ml(-) (1)); 6 h post 6.50 pg center dot ml(-1) (5.70-7.29 pg center dot ml(-1)); 24 h post 6.07 pg center dot ml(-1) (5.14-7.01 pg center dot ml(-) (1)); and 7 days post 6.46 pg center dot ml(-1) (5.45-7.46 pg center dot ml(-1))]. There was no relationship between percentage change in NF-L and summed session linear and angular head accelerations. Conclusion: In adult men, heading frequency or impact biomechanics did not affect NF-L response during a single session of headers at ball velocities reflective of basic training tasks.
  •  
7.
  • Paterson, Ross W, et al. (författare)
  • Serum and cerebrospinal fluid biomarker profiles in acute SARS-CoV-2-associated neurological syndromes.
  • 2021
  • Ingår i: Brain communications. - : Oxford University Press (OUP). - 2632-1297. ; 3:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Preliminary pathological and biomarker data suggest that SARS-CoV-2 infection can damage the nervous system. To understand what, where and how damage occurs, we collected serum and CSF from patients with COVID-19 and characterized neurological syndromes involving the PNS and CNS (n=34). We measured biomarkers of neuronal damage and neuroinflammation, and compared these with non-neurological control groups, which included patients with (n=94) and without (n=24) COVID-19. We detected increased concentrations of neurofilament light, a dynamic biomarker of neuronal damage, in the CSF of those with CNS inflammation (encephalitis and acute disseminated encephalomyelitis) [14800pg/ml (400, 32400)], compared to those with encephalopathy [1410pg/ml (756, 1446)], peripheral syndromes (Guillain-Barré syndrome) [740pg/ml (507, 881)] and controls [872pg/ml (654, 1200)]. Serum neurofilament light levels were elevated across patients hospitalized with COVID-19, irrespective of neurological manifestations. There was not the usual close correlation between CSF and serum neurofilament light, suggesting serum neurofilament light elevation in the non-neurological patients may reflect peripheral nerve damage in response to severe illness. We did not find significantly elevated levels of serum neurofilament light in community cases of COVID-19 arguing against significant neurological damage. Glial fibrillary acidic protein, a marker of astrocytic activation, was not elevated in the CSF or serum of any group, suggesting astrocytic activation is not a major mediator of neuronal damage in COVID-19.
  •  
8.
  • James, Sarah-Naomi, et al. (författare)
  • A population-based study of head injury, cognitive function and pathological markers.
  • 2021
  • Ingår i: Annals of clinical and translational neurology. - : Wiley. - 2328-9503. ; 8:4, s. 842-856
  • Tidskriftsartikel (refereegranskat)abstract
    • To assess associations between head injury (HI) with loss of consciousness (LOC), ageing and markers of later-life cerebral pathology; and to explore whether those effects may help explain subtle cognitive deficits in dementia-free individuals.Participants (n=502, age=69-71) from the 1946 British Birth Cohort underwent cognitive testing (subtests of Preclinical Alzheimer Cognitive Composite), 18 F-florbetapir Aβ-PET and MR imaging. Measures include Aβ-PET status, brain, hippocampal and white matter hyperintensity (WMH) volumes, normal appearing white matter (NAWM) microstructure, Alzheimer's disease (AD)-related cortical thickness, and serum neurofilament light chain (NFL). LOC HI metrics include HI occurring: (i) >15years prior to the scan (ii) anytime up to age 71.Compared to those with no evidence of an LOC HI, only those reporting an LOC HI>15years prior (16%, n=80) performed worse on cognitive tests at age 69-71, taking into account premorbid cognition, particularly on the digit-symbol substitution test (DSST). Smaller brain volume (BV) and adverse NAWM microstructural integrity explained 30% and 16% of the relationship between HI and DSST, respectively. We found no evidence that LOC HI was associated with Aβ load, hippocampal volume, WMH volume, AD-related cortical thickness or NFL (all p>0.01).Having a LOC HI aged 50's and younger was linked with lower later-life cognitive function at age ~70 than expected. This may reflect a damaging but small impact of HI; explained in part by smaller BV and different microstructure pathways but not via pathology related to AD (amyloid, hippocampal volume, AD cortical thickness) or ongoing neurodegeneration (serum NFL).
  •  
9.
  • Kagiava, Alexia, et al. (författare)
  • AAV9-mediated Schwann cell-targeted gene therapy rescues a model of demyelinating neuropathy.
  • 2021
  • Ingår i: Gene therapy. - : Springer Science and Business Media LLC. - 1476-5462 .- 0969-7128. ; 28:10-11, s. 659-675
  • Tidskriftsartikel (refereegranskat)abstract
    • Mutations in the GJB1 gene, encoding the gap junction (GJ) protein connexin32 (Cx32), cause X-linked Charcot-Marie-Tooth disease (CMT1X), an inherited demyelinating neuropathy. We developed a gene therapy approach for CMT1X using an AAV9 vector to deliver the GJB1/Cx32 gene under the myelin protein zero (Mpz) promoter for targeted expression in Schwann cells. Lumbar intrathecal injection of the AAV9-Mpz.GJB1 resulted in widespread biodistribution in the peripheral nervous system including lumbar roots, sciatic and femoral nerves, as well as in Cx32 expression in the paranodal non-compact myelin areas of myelinated fibers. A pre-, as well as post-onset treatment trial in Gjb1-null mice, demonstrated improved motor performance and sciatic nerve conduction velocities along with improved myelination and reduced inflammation in peripheral nerve tissues. Blood biomarker levels were also significantly ameliorated in treated mice. This study provides evidence that a clinically translatable AAV9-mediated gene therapy approach targeting Schwann cells could potentially treat CMT1X.
  •  
10.
  • Keshavan, Ashvini, et al. (författare)
  • Population-based blood screening for preclinical Alzheimer's disease in a British birth cohort at age 70.
  • 2021
  • Ingår i: Brain : a journal of neurology. - : Oxford University Press (OUP). - 1460-2156. ; 144:2, s. 434-449
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer's disease has a preclinical stage when cerebral amyloid-β deposition occurs before symptoms emerge, and when amyloid-β-targeted therapies may have maximum benefits. Existing amyloid-β status measurement techniques, including amyloid PET and CSF testing, are difficult to deploy at scale, so blood biomarkers are increasingly considered for screening. We compared three different blood-based techniques-liquid chromatography-mass spectrometry measures of plasma amyloid-β, and single molecule array (Simoa) measures of plasma amyloid-β and phospho-tau181-to detect cortical 18F-florbetapir amyloid PET positivity (defined as a standardized uptake value ratio of >0.61 between a predefined cortical region of interest and eroded subcortical white matter) in dementia-free members of Insight 46, a substudy of the population-based British 1946 birth cohort. We used logistic regression models with blood biomarkers as predictors of amyloid PET status, with or without age, sex and APOE ε4 carrier status as covariates. We generated receiver operating characteristics curves and quantified areas under the curves to compare the concordance of the different blood tests with amyloid PET. We determined blood test cut-off points using Youden's index, then estimated numbers needed to screen to obtain 100 amyloid PET-positive individuals. Of the 502 individuals assessed, 441 dementia-free individuals with complete data were included; 82 (18.6%) were amyloid PET-positive. The area under the curve for amyloid PET status using a base model comprising age, sex and APOE ε4 carrier status was 0.695 (95% confidence interval: 0.628-0.762). The two best-performing Simoa plasma biomarkers were amyloid-β42/40 (0.620; 0.548-0.691) and phospho-tau181 (0.707; 0.646-0.768), but neither outperformed the base model. Mass spectrometry plasma measures performed significantly better than any other measure (amyloid-β1-42/1-40: 0.817; 0.770-0.864 and amyloid-β composite: 0.820; 0.775-0.866). At a cut-off point of 0.095, mass spectrometry measures of amyloid-β1-42/1-40 detected amyloid PET positivity with 86.6% sensitivity and 71.9% specificity. Without screening, to obtain 100 PET-positive individuals from a population with similar amyloid PET positivity prevalence to Insight 46, 543 PET scans would need to be performed. Screening using age, sex and APOE ε4 status would require 940 individuals, of whom 266 would proceed to scan. Using mass spectrometry amyloid-β1-42/1-40 alone would reduce these numbers to 623 individuals and 243 individuals, respectively. Across a theoretical range of amyloid PET positivity prevalence of 10-50%, mass spectrometry measures of amyloid-β1-42/1-40 would consistently reduce the numbers proceeding to scans, with greater cost savings demonstrated at lower prevalence.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy