SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Köpke L.) srt2:(2020-2024)"

Sökning: WFRF:(Köpke L.) > (2020-2024)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abbasi, R., et al. (författare)
  • A Time-Variability Test for Candidate Neutrino Sources Observed with IceCube
  • 2022
  • Ingår i: 37th International Cosmic Ray Conference (ICRC 2021). - Trieste, Italy : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • Recent studies with IceCube have shown signs of a time-integrated flux of astrophysical neutrinos from point-like sources such as TXS 0506+056 and NGC 1068. Time-variability of this neutrino emission from TXS 0506+056 has been studied extensively by assuming a temporal profile of the possible flare(s) or searching for temporal neutrino correlation with other electromagnetic counterparts. However, experimental evidence of the temporal profile of an astrophysical neutrino signal, besides the TXS 0506+056 source, remains lacking. In this study, we present a new KS-test based method for investigating time-variability. This new method complements the existing time-dependent search methods with a test for arbitrary time-variability, independent of an assumed temporal profile or electromagnetic counterpart. Additionally, this method provides a diagnostic tool for characterizing point-like source candidates in IceCube by distinguishing variable from steady neutrino emission and we show results of applying this method to a small catalog of candidate blazars.
  •  
2.
  • Abbasi, R., et al. (författare)
  • Camera Calibration for the IceCube Upgrade and Gen2
  • 2022
  • Ingår i: 37th International Cosmic Ray Conference (ICRC 2021). - Trieste, Italy : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • An upgrade to the IceCube Neutrino Telescope is currently under construction. For this IceCube Upgrade, seven new strings will be deployed in the central region of the 86 string IceCube detector to enhance the capability to detect neutrinos in the GeV range. One of the main science objectives of the IceCube Upgrade is an improved calibration of the IceCube detector to reduce systematic uncertainties related to the optical properties of the ice. We have developed a novel optical camera and illumination system that will be part of 700 newly developed optical modules to be deployed with the IceCube Upgrade. A combination of transmission and reflection photographic measurements will be used to measure the optical properties of bulk ice between strings and refrozen ice in the drill hole, to determine module positions, and to survey the local ice environments surrounding the sensor module. In this contribution we present the production design, acceptance testing, and plan for post-deployment calibration measurements with the camera system.
  •  
3.
  • Abbasi, R., et al. (författare)
  • Improved Characterization of the Astrophysical Muon-neutrino Flux with 9.5 Years of IceCube Data
  • 2022
  • Ingår i: Astrophysical Journal. - : IOP Publishing Ltd. - 0004-637X .- 1538-4357. ; 928:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a measurement of the high-energy astrophysical muon-neutrino flux with the IceCube Neutrino Observatory. The measurement uses a high-purity selection of 650k neutrino-induced muon tracks from the northern celestial hemisphere, corresponding to 9.5 yr of experimental data. With respect to previous publications, the measurement is improved by the increased size of the event sample and the extended model testing beyond simple power-law hypotheses. An updated treatment of systematic uncertainties and atmospheric background fluxes has been implemented based on recent models. The best-fit single power-law parameterization for the astrophysical energy spectrum results in a normalization of phi(nu mu+(nu) over bar mu)(@ 00TeV) = 1.441(-0.26)(+0.25 )x 10(-18) GeV(-1)cm(-2) s(-1 )sr(-1) and a spectral index gamma(SPL) = 2.37(-0.09)(+0.09), constrained in the energy range from 15 TeV to 5 PeV. The model tests include a single power law with a spectral cutoff at high energies, a log-parabola model, several source-class-specific flux predictions from the literature, and a model-independent spectral unfolding. The data are consistent with a single power-law hypothesis, however, spectra with softening above one PeV are statistically more favorable at a two-sigma level.
  •  
4.
  • Abbasi, R., et al. (författare)
  • Characterization of the PeV astrophysical neutrino energy spectrum with IceCube using down-going tracks
  • 2022
  • Ingår i: 37th International Cosmic Ray Conference, ICRC2021. - Trieste, Italy : Proceedings of Science.
  • Konferensbidrag (refereegranskat)abstract
    • The IceCube Neutrino Observatory has observed a diffuse flux of astrophysical neutrinos with energies from TeV to a few PeV. Recent IceCube analyses have limited sensitivity to PeV neutrinos because upward-going neutrino fluxes are attenuated by the Earth while the Extremely High Energy (EHE) result targets cosmogenic neutrinos only above 10 PeV. In this work, we present a new event selection that fills the gap between 1 PeV and 10 PeV. This sample is obtained by selecting high-energy down-going through-going tracks from 8 years of data. To reduce the atmospheric muon backgrounds and achieve a high signal-to-background ratio, we combine two techniques. The first technique selects events with high stochasticity because single muons created by neutrinos lose energy more stochastically than atmospheric muon bundles whose energy losses are smoothened due to large muon multiplicities. The second technique uses the IceTop surface array as a veto of atmospheric background events. To characterize the astrophysical neutrino flux and test the existence of a cut-off in the neutrino energy spectrum at a few PeV, a global fit will be performed by combining this sample with results from the 7-year High Energy Starting Events (HESE) analysis.
  •  
5.
  • Abbasi, R., et al. (författare)
  • Search for 10-1000 GeV Neutrinos from Gamma-Ray Bursts with IceCube
  • 2024
  • Ingår i: Astrophysical Journal. - : Institute of Physics (IOP). - 0004-637X .- 1538-4357. ; 964:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the results of a search for 10-1000 GeV neutrinos from 2268 gamma-ray bursts (GRBs) over 8 yr of IceCube-DeepCore data. This work probes burst physics below the photosphere where electromagnetic radiation cannot escape. Neutrinos of tens of giga electronvolts are predicted in sub-photospheric collision of free-streaming neutrons with bulk-jet protons. In a first analysis, we searched for the most significant neutrino-GRB coincidence using six overlapping time windows centered on the prompt phase of each GRB. In a second analysis, we conducted a search for a group of GRBs, each individually too weak to be detectable, but potentially significant when combined. No evidence of neutrino emission is found for either analysis. The most significant neutrino coincidence is for Fermi-GBM GRB bn 140807500, with a p-value of 0.097 corrected for all trials. The binomial test used to search for a group of GRBs had a p-value of 0.65 after all trial corrections. The binomial test found a group consisting only of GRB bn 140807500 and no additional GRBs. The neutrino limits of this work complement those obtained by IceCube at tera electronvolt to peta electronvolt energies. We compare our findings for the large set of GRBs as well as GRB 221009A to the sub-photospheric neutron-proton collision model and find that GRB 221009A provides the most constraining limit on baryon loading. For a jet Lorentz factor of 300 (800), the baryon loading on GRB 221009A is lower than 3.85 (2.13) at a 90% confidence level.
  •  
6.
  • Abbasi, R., et al. (författare)
  • Measurement of acoustic attenuation in South Pole ice
  • 2011
  • Ingår i: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 34:6, s. 382-393
  • Tidskriftsartikel (refereegranskat)abstract
    • Using the South Pole Acoustic Test Setup (SPATS) and a retrievable transmitter deployed in holes drilled for the IceCube experiment, we have measured the attenuation of acoustic signals by South Pole ice at depths between 190 m and 500 m. Three data sets, using different acoustic sources, have been analyzed and give consistent results. The method with the smallest systematic uncertainties yields an amplitude attenuation coefficient alpha = 3.20 +/- 0.57 km(-1) between 10 and 30 kHz, considerably larger than previous theoretical estimates. Expressed as an attenuation length, the analyses give a consistent result for lambda equivalent to 1/alpha of similar to 300 m with 20% uncertainty. No significant depth or frequency dependence has been found.
  •  
7.
  • Abbasi, R., et al. (författare)
  • Search for Extended Sources of Neutrino Emission in the Galactic Plane with IceCube
  • 2023
  • Ingår i: Astrophysical Journal. - : Institute of Physics (IOP). - 0004-637X .- 1538-4357. ; 956:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The Galactic plane, harboring a diffuse neutrino flux, is a particularly interesting target in which to study potential cosmic-ray acceleration sites. Recent gamma-ray observations by HAWC and LHAASO have presented evidence for multiple Galactic sources that exhibit a spatially extended morphology and have energy spectra continuing beyond 100 TeV. A fraction of such emission could be produced by interactions of accelerated hadronic cosmic rays, resulting in an excess of high-energy neutrinos clustered near these regions. Using 10 years of IceCube data comprising track-like events that originate from charged-current muon neutrino interactions, we perform a dedicated search for extended neutrino sources in the Galaxy. We find no evidence for time-integrated neutrino emission from the potential extended sources studied in the Galactic plane. The most significant location, at 2.6 sigma post-trials, is a 1.degrees 7 sized region coincident with the unidentified TeV gamma-ray source 3HWC J1951+266. We provide strong constraints on hadronic emission from several regions in the galaxy.
  •  
8.
  • Abbasi, R., et al. (författare)
  • Gravitational Wave Follow-Up Using Low Energy Neutrinos in IceCube DeepCore
  • 2022
  • Ingår i: 37th International Cosmic Ray Conference (ICRC 2021). - Trieste, Italy : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • The IceCube DeepCore is a dense infill array of the IceCube Neutrino Observatory at the South Pole. While IceCube is best suited for detecting neutrinos with energies of several 100 GeV and above, DeepCore allows to probe neutrinos with lower energies. We focus on a sample of neutrinos with energies above approximately 10 GeV, which was originally optimised for oscillation experiments. Recently, it has been adapted to enable searches for transient sources of astrophysical neutrinos in the sky. In particular, this low-energy dataset can be used to conduct follow-up searches of gravitational wave transients detected by the LIGO-Virgo instruments. A study of this, which complements IceCube's follow-up of gravitational wave events using highenergy neutrino samples, will be discussed here.
  •  
9.
  • Abbasi, R., et al. (författare)
  • Observation of seasonal variations of the flux of high-energy atmospheric neutrinos with IceCube
  • 2023
  • Ingår i: European Physical Journal C. - : Springer. - 1434-6044 .- 1434-6052. ; 83:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Atmospheric muon neutrinos are produced by meson decays in cosmic-ray-induced air showers. The flux depends on meteorological quantities such as the air temperature, which affects the density of air. Competition between decay and re-interaction of those mesons in the first particle production generations gives rise to a higher neutrino flux when the air density in the stratosphere is lower, corresponding to a higher temperature. A measurement of a temperature dependence of the atmospheric vμ, flux provides a novel method for constraining hadronic interaction models of air showers. It is particularly sensitive to the production of kaons. Studying this temperature dependence for the first time requires a large sample of high-energy neutrinos as well as a detailed understanding of atmospheric properties. We report the significant (> 10 σ) observation of a correlation between the rate of more than 260,000 neutrinos, detected by IceCube between 2012 and 2018, and atmospheric tem-peratures of the stratosphere, measured by the Atmospheric Infrared Sounder (AIRS) instrument aboard NASA's AQUA satellite. For the observed 10% seasonal change of effective atmospheric temperature we measure a 3.5(3)% change in the muon neutrino flux. This observed correlation deviates by about 2-3 standard deviations from the expected correla-tion of 4.3% as obtained from theoretical predictions under the assumption of various hadronic interaction models.
  •  
10.
  • Abbasi, R., et al. (författare)
  • Search for neutrino-induced cascades with five years of AMANDA data
  • 2011
  • Ingår i: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 34:6, s. 420-430
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the search for electromagnetic and hadronic showers ("cascades") produced by a diffuse flux of extraterrestrial neutrinos in the AMANDA neutrino telescope. Data for this analysis were recorded during 1001 days of detector livetime in the years 2000-2004. The observed event rates are consistent with the background expectation from atmospheric neutrinos and muons. An upper limit is derived for the diffuse flux of neutrinos of all flavors assuming a flavor ratio of v(e):v(mu):v(tau) = 1:1:1 at the detection site. The all-flavor flux of neutrinos with an energy spectrum Phi proportional to E-2 is less than 5.0 x 10(-7) GeV s(-1) sr(-1) cm(-2) at a 90% C.L. Here, 90% of the simulated signal would fall within the energy range 40 TeV to 9 PeV. We discuss flux limits in the context of several specific models of extraterrestrial and prompt atmospheric neutrino production.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy