SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wei Zhixuan) "

Sökning: WFRF:(Wei Zhixuan)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chen, Jialin, et al. (författare)
  • Hydroxycamptothecin and substratum stiffness synergistically regulate fibrosis of human corneal fibroblasts
  • 2023
  • Ingår i: ACS Biomaterials Science & Engineering. - : American Chemical Society (ACS). - 2373-9878. ; 9:2, s. 959-967
  • Tidskriftsartikel (refereegranskat)abstract
    • Corneal fibrosis is a common outcome of inappropriate repair associated with trauma or ocular infection. Altered biomechanical properties with increased corneal stiffness is a feature of fibrosis that cause corneal opacities, resulting in severe visual impairment and even blindness. The present study aims to determine the effect of hydroxycamptothecin (HCPT) and matrix stiffness on transforming growth factor-β1 (TGF-β1)-induced fibrotic processes in human corneal fibroblasts (HTK cells). HTK cells were cultured on substrates with different stiffnesses ("soft", ∼261 kPa; "stiff", ∼2.5 × 103 kPa) and on tissue culture plastic (TCP, ∼106 kPa) and simultaneously treated with or without 1 μg/mL HCPT and 10 ng/mL TGF-β1. We found that HCPT induced decreased cell viability and antiproliferative effects on HTK cells. TGF-β1-induced expression of fibrosis-related genes (FN1, ACTA2) was reduced if the cells were simultaneously treated with HCPT. Substrate stiffness did not affect the expression of fibrosis-related genes. The TGF-β1 induced expression of FN1 on both soft and stiff substrates was reduced if cells were simultaneously treated with HCPT. However, this trend was not seen for ACTA2, i.e., the TGF-β1 induced expression of ACTA2 was not reduced by simultaneous treatment of HCPT in either soft or stiff substrate. Instead, HCPT treatment in the presence of TGF-β1 resulted in increased gene expression of keratocyte phenotype makers (LUM, KERA, AQP1, CHTS6) on both substrate stiffnesses. In addition, the protein expression of keratocyte phenotype makers LUM and ALDH3 was increased in HTK cells simultaneously treated with TGF-β1 and HCPT on stiff substrate as compared to control, i.e., without HCPT. In conclusion, we found that HCPT can reduce TGF-β1-induced fibrosis and promote the keratocyte phenotype in a substrate stiffness dependent manner. Thus, HCPT stimulation might be an approach to stimulate keratocytes in the appropriate healing stage to avoid or reverse fibrosis and achieve more optimal corneal wound healing.
  •  
2.
  • Chen, Zhixuan, et al. (författare)
  • Effects of Zinc, Magnesium, and Iron Ions on Bone Tissue Engineering
  • 2022
  • Ingår i: ACS Biomaterials Science & Engineering. - : American Chemical Society (ACS). - 2373-9878. ; 8:6, s. 2321-2335
  • Forskningsöversikt (refereegranskat)abstract
    • Large-sized bone defects are a great challenge in clinics and considerably impair the quality of patients' daily life. Tissue engineering strategies using cells, scaffolds, and bioactive molecules to regulate the microenvironment in bone regeneration is a promising approach. Zinc, magnesium, and iron ions are natural elements in bone tissue and participate in many physiological processes of bone metabolism and therefore have great potential for bone tissue engineering and regeneration. In this review, we performed a systematic analysis on the effects of zinc, magnesium, and iron ions in bone tissue engineering. We focus on the role of these ions in properties of scaffolds (mechanical strength, degradation, osteogenesis, antibacterial properties, etc.). We hope that our summary of the current research achievements and our notifications of potential strategies to improve the effects of zinc, magnesium, and iron ions in scaffolds for bone repair and regeneration will find new inspiration and breakthroughs to inspire future research.
  •  
3.
  • Chi, Jiayu, et al. (författare)
  • Topographic Orientation of Scaffolds for Tissue Regeneration : Recent Advances in Biomaterial Design and Applications
  • 2022
  • Ingår i: Biomimetics. - : MDPI. - 2313-7673. ; 7:3
  • Forskningsöversikt (refereegranskat)abstract
    • Tissue engineering to develop alternatives for the maintenance, restoration, or enhancement of injured tissues and organs is gaining more and more attention. In tissue engineering, the scaffold used is one of the most critical elements. Its characteristics are expected to mimic the native extracellular matrix and its unique topographical structures. Recently, the topographies of scaffolds have received increasing attention, not least because different topographies, such as aligned and random, have different repair effects on various tissues. In this review, we have focused on various technologies (electrospinning, directional freeze-drying, magnetic freeze-casting, etching, and 3-D printing) to fabricate scaffolds with different topographic orientations, as well as discussed the physicochemical (mechanical properties, porosity, hydrophilicity, and degradation) and biological properties (morphology, distribution, adhesion, proliferation, and migration) of different topographies. Subsequently, we have compiled the effect of scaffold orientation on the regeneration of vessels, skin, neural tissue, bone, articular cartilage, ligaments, tendons, cardiac tissue, corneas, skeletal muscle, and smooth muscle. The compiled information in this review will facilitate the future development of optimal topographical scaffolds for the regeneration of certain tissues. In the majority of tissues, aligned scaffolds are more suitable than random scaffolds for tissue repair and regeneration. The underlying mechanism explaining the various effects of aligned and random orientation might be the differences in “contact guidance”, which stimulate certain biological responses in cells.
  •  
4.
  • Hui, Zhixuan, et al. (författare)
  • TGFβ-induced EN1 promotes tumor budding of adenoid cystic carcinoma in patient-derived organoid model
  • 2024
  • Ingår i: International Journal of Cancer. - : John Wiley & Sons. - 0020-7136 .- 1097-0215. ; 154:10, s. 1814-1827
  • Tidskriftsartikel (refereegranskat)abstract
    • Adenoid cystic carcinoma (ACC) and basal cell adenoma (BCA) share many histological characteristics and often need a differential diagnosis in clinical pathology. Recently, we found homeobox protein engrailed-1 (EN1) was a potential diagnostic marker for ACC in an organoids library of salivary gland tumors (SGTs). Here we aim to confirm EN1 as a differential diagnostic marker for ACC, and further investigate the regulatory mechanism and biological function of EN1 in tumor progression. The transcriptional analysis, quantitative polymerase chain reaction, Western blot and immunohistochemistry staining were performed and revealed that EN1 was specifically and highly expressed in ACC, and accurately differentiated ACC from BCA. Furthermore, TGFβ signaling pathway was found associated with ACC, and the regulation of EN1 through TGFβ was detected in the human ACC cell lines and patient-derived organoids (PDOs). TGFβ-induced EN1 was important in promoting tumor budding in the PDOs model. Interestingly, a high level of EN1 and TGFβ1 in the budding tips was observed in ACC clinical samples, and the expression of EN1 and TGFβ1 in ACC was significantly associated with the clinical stage. In summary, our study verified EN1 is a good diagnostic marker to differentiate ACC from BCA. TGFβ-induced EN1 facilitates the tumor budding of ACC, which might be an important mechanism related to the malignant phenotype of ACC.
  •  
5.
  • Palacin, M. R., et al. (författare)
  • Roadmap on multivalent batteries
  • 2024
  • Ingår i: JPhys Energy. - 2515-7655. ; 6:3
  • Forskningsöversikt (refereegranskat)abstract
    • Battery technologies based in multivalent charge carriers with ideally two or three electrons transferred per ion exchanged between the electrodes have large promises in raw performance numbers, most often expressed as high energy density, and are also ideally based on raw materials that are widely abundant and less expensive. Yet, these are still globally in their infancy, with some concepts (e.g. Mg metal) being more technologically mature. The challenges to address are derived on one side from the highly polarizing nature of multivalent ions when compared to single valent concepts such as Li+ or Na+ present in Li-ion or Na-ion batteries, and on the other, from the difficulties in achieving efficient metal plating/stripping (which remains the holy grail for lithium). Nonetheless, research performed to date has given some fruits and a clearer view of the challenges ahead. These include technological topics (production of thin and ductile metal foil anodes) but also chemical aspects (electrolytes with high conductivity enabling efficient plating/stripping) or high-capacity cathodes with suitable kinetics (better inorganic hosts for intercalation of such highly polarizable multivalent ions). This roadmap provides an extensive review by experts in the different technologies, which exhibit similarities but also striking differences, of the current state of the art in 2023 and the research directions and strategies currently underway to develop multivalent batteries. The aim is to provide an opinion with respect to the current challenges, potential bottlenecks, and also emerging opportunities for their practical deployment.
  •  
6.
  • Sheng, Renwang, et al. (författare)
  • Material stiffness in cooperation with macrophage paracrine signals determines the tenogenic differentiation of mesenchymal stem cells
  • 2023
  • Ingår i: Advanced Science. - : John Wiley & Sons. - 2198-3844. ; 10:17
  • Tidskriftsartikel (refereegranskat)abstract
    • Stiffness is an important physical property of biomaterials that determines stem cell fate. Guiding stem cell differentiation via stiffness modulation has been considered in tissue engineering. However, the mechanism by which material stiffness regulates stem cell differentiation into the tendon lineage remains controversial. Increasing evidence demonstrates that immune cells interact with implanted biomaterials and regulate stem cell behaviors via paracrine signaling; however, the role of this mechanism in tendon differentiation is not clear. In this study, polydimethylsiloxane (PDMS) substrates with different stiffnesses are developed, and the tenogenic differentiation of mesenchymal stem cells (MSCs) exposed to different stiffnesses and macrophage paracrine signals is investigated. The results reveal that lower stiffnesses facilitates tenogenic differentiation of MSCs, while macrophage paracrine signals at these stiffnesses suppress the differentiation. When exposed to these two stimuli, MSCs still exhibit enhanced tendon differentiation, which is further elucidated by global proteomic analysis. Following subcutaneous implantation in rats for 2 weeks, soft biomaterial induces only low inflammation and promotes tendon-like tissue formation. In conclusion, the study demonstrates that soft, rather than stiff, material has a greater potential to guide tenogenic differentiation of stem cells, which provides comprehensive evidence for optimized bioactive scaffold design in tendon tissue engineering.
  •  
7.
  • Wang, Bo, et al. (författare)
  • An organoid library of salivary gland tumors reveals subtype-specific characteristics and biomarkers
  • 2022
  • Ingår i: Journal of Experimental & Clinical Cancer Research. - : BioMed Central (BMC). - 1756-9966. ; 41:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Salivary gland tumors (SGTs) include a large group of rare neoplasms in the head and neck region, and the heterogeneous and overlapping features among the subtypes frequently make diagnostic difficulties. There is an urgent need to understand the cellular mechanisms underlying the heterogeneity and overlap among the subtypes, and explore the subtype-specific diagnostic biomarkers.Methods: The tumor tissue and the adjacent normal tissue from the 6 most common types of SGTs were processed for organoid culture which only maintained tumor epithelial cells. Organoids were histologically evaluated based on phenotype markers, followed by transcriptional profiling using RNA-sequencing. The transcriptomic similarities and differences among the subtypes were analyzed by subtype consensus clustering and hierarchical clustering. Furthermore, by comparative transcriptional analysis for these 6 types of SGTs and the matched organoids, the potential diagnostic biomarkers from tumor epithelium were identified, in which two selected biomarkers were evaluated by qPCR and confirmed by immunohistochemistry staining using a tissue microarray.Results: We generated a biobank of patient-derived organoids (PDOs) with 6 subtypes of SGTs, including 21 benign and 24 malignant SGTs. The PDOs recapitulated the morphological and transcriptional characteristics of the parental tumors. The overlap in the cell types and the heterogenous growth patterns were observed in the different subtypes of organoids. Comparing the bulk tissues, the cluster analysis of the PDOs remarkably revealed the epithelial characteristics, and visualized the intrinsic relationship among these subtypes. Finally, the exclusive biomarkers for the 6 most common types of SGTs were uncovered by comparative analysis, and PTP4A1 was demonstrated as a useful diagnostic biomarker for mucoepidermoid carcinoma.Conclusions: We established the first organoid biobank with multiple subtypes of SGTs. PDOs of SGTs recapitulate the morphological and transcriptional characteristics of the original tumors, which uncovers subtype-specific biomarkers and reveals the molecular distance among the subtype of SGTs.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy