SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "id:"swepub:oai:DiVA.org:kth-286461" "

Search: id:"swepub:oai:DiVA.org:kth-286461"

  • Result 1-1 of 1
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Guo, Lifang, et al. (author)
  • Improving the compatibility, surface strength, and dimensional stability of cellulosic fibers using glycidyl methacrylate grafting
  • 2020
  • In: Journal of Materials Science. - : Springer. - 0022-2461 .- 1573-4803. ; 55:27, s. 12906-12920
  • Journal article (peer-reviewed)abstract
    • The graft copolymerization of lignocellulosic fibers with glycidyl methacrylate (GMA) using a Fe2+-thiourea dioxide-H(2)O(2)redox system (Fe2+-TD-H2O2) was studied to overcome the problems of poor compatibility and low surface strength when cellulosic fibers are composited with synthetic polymers. The results show that cellulose-poly(GMA) (CPGMA) was successfully synthesized from GMA and bleachedEucalyptuscellulosic fibers by Fe2+-TD-H(2)O(2)in a mild aqueous solution. CPGMA had high graft rate (244%), high content of epoxy group, and high stability in water. X-ray diffraction patterns and(13)C cross-polarization magic angle spinning nuclear magnetic resonance spectra analyses showed that graft copolymerization did not change the crystalline structure of the CPGMA fiber backbone cellulose, but the crystallinity of the CPGMA fiber decreased with an increase in amorphous PGMA grafting. Scanning electron microscopy confirmed that the grafting reaction occurred both inside and outside the fiber. The specific surface area and pore diameter of the grafted fibers were significantly affected by the grafting. The hydrophobicity of the fibers was significantly enhanced by graft copolymerization. PGMA grafting can enhance the compatibility between the modified fiber and synthetic polymer matrix, improving the processing runnability and product properties of composite materials. A high intensity focused ultrasound method was used to analyze the fiber surface strength. It was confirmed that graft copolymerization significantly improved the surface strength of the grafted fibers. Graft copolymerization can significantly improve the dimensional stability of cellulosic fibers.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-1 of 1
Type of publication
journal article (1)
Type of content
peer-reviewed (1)
Author/Editor
Ren, H. (1)
Wang, X. (1)
Wang, L (1)
Huang, J. (1)
Ek, Monica (1)
Meng, A (1)
show more...
Zhai, H (1)
Guo, Lifang (1)
show less...
University
Royal Institute of Technology (1)
Language
English (1)
Research subject (UKÄ/SCB)
Natural sciences (1)
Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view