SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "id:"swepub:oai:DiVA.org:liu-130668" "

Search: id:"swepub:oai:DiVA.org:liu-130668"

  • Result 1-1 of 1
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Banyai, Istvan, et al. (author)
  • Simple O-17 NMR method for studying electron self-exchange reaction between UO22+ and U4+ aqua ions in acidic solution
  • 2016
  • In: Magnetic Resonance in Chemistry. - : WILEY-BLACKWELL. - 0749-1581 .- 1097-458X. ; 54:6, s. 444-450
  • Journal article (peer-reviewed)abstract
    • O-17 NMR spectroscopy is proven to be suitable and convenient method for studying the electron exchange by following the decrease of O-17-enrichment in (UOO2+)-O-17 ion in the presence of U4+ ion in aqueous solution. The reactions have been performed at room temperature using I=5MClO(4)(-) ionic medium in acidic solutions in order to determine the kinetics of electron exchange between the U4+ and UO22+ aqua ions. The rate equation is given as R = a[H+](-2) + R, where R is an acid independent parallel path. R depends on the concentration of the uranium species according to the following empirical rate equation: R = k(1)[UO2+](1/2)[U4+](1/2) + k(2)[UO2+](3/2)[U4+](1/2). The mechanism of the inverse H+ concentration-dependent path is interpreted as equilibrium formation of reactive UO2+ species from UO22+ and U4+ aqua ions and its electron exchange with UO22+. The determined rate constant of this reaction path is in agreement with the rate constant of UO22+-UO2+, one electron exchange step calculated by Marcus theory, match the range given experimentally of it in an early study. Our value lies in the same order of magnitude as the recently calculated ones by quantum chemical methods. The acid independent part is attributed to the formation of less hydrolyzed U(V) species, i.e. UO3+, which loses enrichment mainly by electron exchange with UO22+ ions. One can also conclude that O-17 NMR spectroscopy, or in general NMR spectroscopy with careful kinetic analysis, is a powerful tool for studying isotope exchange reactions without the use of sophisticated separation processes. Copyright (C) 2015 John Wiley amp; Sons, Ltd.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-1 of 1
Type of publication
journal article (1)
Type of content
peer-reviewed (1)
Author/Editor
Tóth, Imre (1)
Bányai, István (1)
Farkas, Ildiko (1)
University
Linköping University (1)
Language
English (1)
Research subject (UKÄ/SCB)
Natural sciences (1)
Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view