SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "id:"swepub:oai:lup.lub.lu.se:90a042eb-6489-447d-8019-81d01131ba79" "

Search: id:"swepub:oai:lup.lub.lu.se:90a042eb-6489-447d-8019-81d01131ba79"

  • Result 1-1 of 1
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Lilliehorn, Tobias, et al. (author)
  • Trapping of microparticles in the near field of an ultrasonic transducer
  • 2005
  • In: Ultrasonics. - : Elsevier BV. - 0041-624X. ; 43:5, s. 293-303
  • Journal article (peer-reviewed)abstract
    • We are investigating means of handling microparticles in microfluidic systems, in particular localized acoustic trapping of microparticles in a flow-through device. Standing ultrasonic waves were generated across a microfluidic channel by ultrasonic microtransducers integrated in one of the channel walls. Particles in a fluid passing a transducer were drawn to pressure minima in the acoustic field, thereby being trapped and confined at the lateral position of the transducer. The spatial distribution of trapped particles was evaluated and compared with calculated acoustic intensity distributions. The particle trapping was found to be strongly affected by near field pressure variations due to diffraction effects associated with the finite sized transducer element. Since laterally confining radiation forces are proportional to gradients in the acoustic energy density, these near field pressure variations may be used to get strong trapping forces, thus increasing the lateral trapping efficiency of the device. In the experiments, particles were successfully trapped in linear fluid flow rates up to 1 mm/s. It is anticipated that acoustic trapping using integrated transducers can be exploited in miniaturised total chemical analysis systems (μTAS), where e.g. microbeads with immobilised antibodies can be trapped in arrays and subjected to minute amounts of sample followed by a reaction, detected using fluorescence.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-1 of 1
Type of publication
journal article (1)
Type of content
peer-reviewed (1)
Author/Editor
Nilsson, Johan (1)
Laurell, Thomas (1)
Johansson, Stefan (1)
Almqvist, Monica (1)
Lilliehorn, Tobias (1)
Stepinski, Tadeusz (1)
show more...
Evander, Mikael (1)
Simu, Urban (1)
show less...
University
Lund University (1)
Language
English (1)
Research subject (UKÄ/SCB)
Engineering and Technology (1)
Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view