SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "onr:"swepub:oai:DiVA.org:uu-487299" "

Search: onr:"swepub:oai:DiVA.org:uu-487299"

  • Result 1-1 of 1
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Stenholm, Åke, et al. (author)
  • Investigation of neomycin biodegradation conditions using ericoid mycorrhizal and white rot fungal species
  • 2022
  • In: BMC Biotechnology. - : BMJ Publishing Group Ltd. - 1472-6750. ; 22
  • Journal article (peer-reviewed)abstract
    • Background: In the search for methods to biodegrade recalcitrant compounds, the use of saprotrophic fungi and white rot fungi, in particular belonging to the phylum Basidiomycota, has gained interest. This group of fungi possesses a battery of unspecific extracellular enzymes that can be utilized in the biodegradation of preferably phenolic compounds. In this work, it was investigated under which conditions the white rot fungus Trametes versicolor and the ericoid mycorrhizal fungus Rhizoscyphus ericae (belonging to the phylum Ascomycota) could be used to biodegrade the antibiotic aminoglycoside neomycin at co-metabolic conditions in which external nutrients were supplied. Furthermore, it was also investigated whether a biodegradation could be accomplished using neomycin as the sole nutrient.Results: The results show that both species can biodegrade neomycin 70% under co-metabolic conditions during a one-week time course and that Rhizoscyphus ericae is able to use neomycin as sole nutrient and to approximatively biodegrade it 60% under chosen non co-metabolic conditions. At selected conditions, the biodegradation of neomycin using Rhizoscyphus ericae was monitored by oxidation products of D-ribose which is a hydrolysis product of neomycin.Conclusion: The results are of general interest in the search for fungal species that can biodegrade recalcitrant compounds without the need of external nutrients. The key future application area that will be investigated is purification of waste from recombinant protein production in which neomycin, nutrients and E. coli with neomycin resistance genes are present.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-1 of 1
Type of publication
journal article (1)
Type of content
peer-reviewed (1)
Author/Editor
Pettersson, Curt (1)
Hedeland, Mikael (1)
Stenholm, Åke (1)
University
Uppsala University (1)
Language
English (1)
Research subject (UKÄ/SCB)
Natural sciences (1)
Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view