SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(L773:0939 6314 OR L773:1617 6278) srt2:(2015-2019) "

Sökning: (L773:0939 6314 OR L773:1617 6278) srt2:(2015-2019)

  • Resultat 11-14 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  • Søe, Niels Emil, et al. (författare)
  • Late Holocene landscape development around a Roman Iron Age mass grave, Alken Enge, Denmark
  • 2017
  • Ingår i: Vegetation History and Archaeobotany. - : Springer Science and Business Media LLC. - 0939-6314 .- 1617-6278. ; 26:3, s. 277-292
  • Tidskriftsartikel (refereegranskat)abstract
    • Sediments from the small lake Ilsø situated in the Illerup/Alken Enge Valley were studied in order to investigate past landscape development at the time of a probably ritual human mass burial following battle during the Roman Iron Age (ad 1–400). A pollen record from Ilsø and a number of other records from Jutland were combined using the Landscape Reconstruction Algorithm to reconstruct local vegetation changes through the last 2,800 years. These methods were supplemented by studies of catchment-related geochemistry of the Ilsø lake sediments. The results show a marked reforestation event associated with a strong decrease in erosion levels at the very beginning of the first century ad, contemporaneous with the finds of human remains at Alken Enge. Comparison with a pollen record 10 km away and with those from other sites, reveals that this reforestation occurs unusually early and rapidly, and is an unparalleled development in a Danish context. We suggest that the major landscape changes at the beginning of the Roman Iron Age and forest cover for the next few centuries comprise a possible example of ritual control of local land-use.
  •  
12.
  • Trondman, Anna-Kari, et al. (författare)
  • Are pollen records from small sites appropriate for REVEALS model-based quantitative reconstructions of past regional vegetation? : An empirical test in southern Sweden
  • 2016
  • Ingår i: Vegetation History and Archaeobotany. - : Springer Science and Business Media LLC. - 0939-6314 .- 1617-6278. ; 25:2, s. 131-151
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper we test the performance of the Regional Estimates of VEgetation Abundance from Large Sites (REVEALS) model using pollen records from multiple small sites. We use Holocene pollen records from large and small sites in southern Sweden to identify what is/are the most significant variable(s) affecting the REVEALS-based reconstructions, i.e. type of site (lakes and/or bogs), number of sites, site size, site location in relation to vegetation zones, and/or distance between small sites and large sites. To achieve this objective we grouped the small sites according to (i) the two major modern vegetation zones of the study region, and (ii) the distance between the small sites and large lakes, i.e. small sites within 50, 100, 150, or 200 km of the large lakes. The REVEALS-based reconstructions were performed using 24 pollen taxa. Redundancy analysis was performed on the results from all REVEALS-model runs using the groups within (i) and (ii) separately, and on the results from all runs using the groups within (ii) together. The explanatory power and significance of the variables were identified using forward selection and Monte Carlo permutation tests. The results show that (a) although the REVEALS model was designed for pollen data from large lakes, it also performs well with pollen data from multiple small sites in reconstructing the percentage cover of groups of plant taxa (e.g. open land taxa, summer-green trees, evergreen trees) or individual plant taxa; however, in the case of this study area, the reconstruction of the percentage cover of Calluna vulgaris, Cyperaceae, and Betula may be problematic when using small bogs; (b) standard errors of multiple small-site REVEALS estimates will generally be larger than those obtained using pollen records from large lakes, and they will decrease with increasing size of pollen counts and increasing number of small sites; (c) small lakes are better to use than small bogs if the total number of small sites is low; and (d) the size of small sites and the distance between them do not play a major role, but the distance between the small sites and landscape/vegetation boundaries is a determinant factor for the accuracy of the vegetation reconstructions.
  •  
13.
  • Wacnik, Agnieszka, et al. (författare)
  • Determining the responses of vegetation to natural processes and human impacts in north-eastern Poland during the last millennium : combined pollen, geochemical and historical data
  • 2016
  • Ingår i: Vegetation History and Archaeobotany. - : Springer Science and Business Media LLC. - 0939-6314 .- 1617-6278. ; 25:5, s. 479-498
  • Tidskriftsartikel (refereegranskat)abstract
    • Pollen, charcoal and geochemical investigations were carried out on annually laminated sediments of Lake Zabinskie (54 degrees 07'54.5 '' N; 21 degrees 59'01.1 '' E) and the results were combined with historical and climate data to better understand the mechanism behind plant cover transformations. A millennium-long record of environmental history at 6-years time resolution permitted an assessment of vegetation responses to past human impact and climate fluctuations. Our results show that the history of the region with repeated periods of warfare, epidemics, famine and crop failures is well reflected by environmental proxies. Before the Teutonic Order crusade (AD 1230-1283), agricultural activities of the Prussian tribes were conducted at a distance from the studied lake and caused slight disturbances of local forests. A stronger human impact was registered after ca AD 1460. We confirm that co-domination of pine forests with spruce and oakhornbeam forests on drier habitats as well as the presence of birch and alder woods on wet surfaces near the lake lasted until AD 1610. We identified a transition period of 20 years between AD 1590 and 1610, when forest cover was significantly reduced and the area was partly transformed into open land used for farming activities. The comparison of our data with other pollen datasets from the region confirms significant spatio-temporal differences in the initiation of large-scale woodland clearings in the Great Masurian Lake District. A strong increase in local cultivation was noted after AD 1750 and became even stronger in the period AD 1810-1940. The last 60 years experienced a succession from arable fields and open grasslands to more tree-covered habitats overgrown by birch and alder.
  •  
14.
  • Zhang, Shengrui, et al. (författare)
  • Characteristic pollen source area and vertical pollen dispersal and deposition in a mixed coniferous and deciduous broad-leaved woodland in the Changbai mountains, northeast China.
  • 2016
  • Ingår i: Vegetation History and Archaeobotany. - : Springer Science and Business Media LLC. - 0939-6314 .- 1617-6278. ; 25:1, s. 29-43
  • Tidskriftsartikel (refereegranskat)abstract
    • Pollen influx (number of pollen grains cm−2 year−1) can objectively reflect the dispersal and deposition features of pollen within a certain time and space, and is often used as a basis for the quantitative reconstruction of palaeovegetation; however, little is known about the features and mechanisms of vertical dispersal of pollen. Here we present the results from a 5 year (2006–2010) monitoring program using pollen traps placed at different heights from ground level up to 60 m and surface soil samples in a mixed coniferous and deciduous broad-leaved woodland in the Changbai mountains, northeastern China. The pollen percentages and pollen influx from the traps have very similar characteristics to the highest values for Betula,Fraxinus, Quercus and Pinus, among the tree taxa and Artemisia, Chenopodiaceae and Asteraceae among the herb taxa. Pollen influx values vary significantly with height and show major differences between three distinct layers, above-canopy (≥32 m), within the trunk layer (8 ≤ 32 m) and on the ground (0 m). These differences in pollen influx are explained by differences in (i) the air flows in each of these layers and (ii) the fall speed of pollen of the various taxa. We found that the pollen recorded on the ground surface is a good representation of the major part of the pollen transported in the trunk space of the woodland. Comparison of the pollen influx values with the theoretical, calculated “characteristic pollen source area” (CPSA) of 12 selected taxa indicates that the pollen deposited on the ground surface of the woodland is a fair representation with 85–90 % of the total pollen deposited at a wind speed of 2.4 m s−1 coming from within ca. 1–5 km for Pinus and Quercus, ca. 5–10 km for Ulmus, Tilia, Oleaceae and Betula, ca. 20–40 km for Fraxinus, Poaceae, Chenopodiaceae, Populus andSalix, and ca. 30–60 km for Artemisia; it is also a good representation with 90–98 % of the total pollen deposited coming from within 60 km at a wind speed of 2.4 m s−1, or 100 km at a wind speed: 6 m s−1, for the 12 selected taxa used in the CPSA calculation. Furthermore, comparison with the vegetation map of the area around the sampling site shows that the pollen deposited on the ground represents all plant communities which grow in the study area within 70 km radius of the sampling site. In this study, the pollen percentages obtained from the soil surface samples are significantly biased towards pollen taxa with good preservation due to thick and robust pollen walls. Therefore, if mosses are available instead, soil samples should be avoided for pollen studies, in particular for the study of pollen-vegetation relationships, the estimation of pollen productivities and quantitative reconstruction of past vegetation. The results also indicate that the existing model of pollen dispersal and deposition, Prentice’s model, provides a fair description of the actual pollen dispersal and deposition in this kind of woodland, which suggests that the application of the landscape reconstruction algorithm would be relevant for reconstruction of this type of woodland in the past.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-14 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy