SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "(LAR1:liu) pers:(Syväjärvi Mikael) srt2:(2020-2021)"

Search: (LAR1:liu) pers:(Syväjärvi Mikael) > (2020-2021)

  • Result 11-13 of 13
Sort/group result
   
EnumerationReferenceCoverFind
11.
  • Shi, Yuchen, et al. (author)
  • Epitaxial Graphene Growth on the Step-Structured Surface of Off-Axis C-Face 3C-SiC(1¯1¯1¯)
  • 2020
  • In: Physica Status Solidi (B) Basic Research. - : Wiley. - 0370-1972 .- 1521-3951. ; 257:6
  • Journal article (peer-reviewed)abstract
    • Graphene layers grown on the C-face SiC exhibit quite different structural and electronic properties compared with those grown on the Si-face SiC. Herein, the growth and structural properties of graphene on the off-axis C-face 3C-SiC((Formula presented.)) are studied. The as-grown 4° off-axis 3C-SiC((Formula presented.)) exhibits highly periodic steps with step height of ≈0.75 nm and terrace width of ≈50 nm. After annealing at 1800 °C under 850 mbar argon atmosphere, relatively uniform large graphene domains can be grown. The low-energy electron microscopy (LEEM) results demonstrate that one monolayer (ML) to four-ML graphene domains are grown over several micrometers square, which enables us to measure micro low-energy electron diffraction (μ-LEED) on the single graphene domain. The μ-LEED pattern collected on the monolayer domain mainly exhibits four sets of graphene (1 × 1) spots, indicating the presence of graphene grains with different azimuthal orientations in the same graphene sheet. Raman spectra collected on the graphene domains show rather small D peaks, indicating the presence of less defects and higher crystalline quality of the graphene layers grown on the C-face off-axis 3C-SiC((Formula presented.)).
  •  
12.
  • Trivedi, Maitrayee, et al. (author)
  • Study of Cucurbit[7]uril nanocoating on epitaxial graphene to design a versatile sensing platform
  • 2021
  • In: Applied Surface Science. - : ELSEVIER. - 0169-4332 .- 1873-5584. ; 563
  • Journal article (peer-reviewed)abstract
    • Present study aimed to develop nanocoating of cucurbit[7]uril (CB[7]) on surfaces of silicon and epitaxial graphene using drop casting and spin coating techniques. Here, we report a systematic study for the influence of sonication, probe sonication, and centrifugation time on the dispersion of CB[7] in aqueous solutions for the preparation of high-quality CB[7] nanocoating. Spin speed, spin time, and spin acceleration have been optimised to attain uniform films with minimum rms. Atomic force microscopy is used to study morphology, rms, and height of CB[7] nanocoating under different parameters. The presence of CB[7] on the nanocoating and its binding nature was determined by Infrared absorption and X-ray photoelectron spectroscopy. The present method of CB[7] nanocoating preparation is easy, versatile, scalable, and does not need the addition of electrolyte additives. Prepared CB[7] films are high-quality, uniform, and could be used as a novel sensing platform to tether required functional groups.
  •  
13.
  • Via, Francesco La, et al. (author)
  • New Approaches and Understandings in the Growth of Cubic Silicon Carbide
  • 2021
  • In: Materials. - : MDPI. - 1996-1944. ; 14:18
  • Research review (peer-reviewed)abstract
    • In this review paper, several new approaches about the 3C-SiC growth are been presented. In fact, despite the long research activity on 3C-SiC, no devices with good electrical characteristics have been obtained due to the high defect density and high level of stress. To overcome these problems, two different approaches have been used in the last years. From one side, several compliance substrates have been used to try to reduce both the defects and stress, while from another side, the first bulk growth has been performed to try to improve the quality of this material with respect to the heteroepitaxial one. From all these studies, a new understanding of the material defects has been obtained, as well as regarding all the interactions between defects and several growth parameters. This new knowledge will be the basis to solve the main issue of the 3C-SiC growth and reach the goal to obtain a material with low defects and low stress that would allow for realizing devices with extremely interesting characteristics.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 11-13 of 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view