SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "(WFRF:(Birzan L.)) pers:(Ferrari C.) "

Search: (WFRF:(Birzan L.)) pers:(Ferrari C.)

  • Result 11-15 of 15
Sort/group result
   
EnumerationReferenceCoverFind
11.
  • Heald, G., et al. (author)
  • LOFAR: Recent Imaging Results and Future Prospects
  • 2011
  • In: Journal of Astrophysics and Astronomy. - : Springer Science and Business Media LLC. - 0250-6335 .- 0973-7758. ; 32:4, s. 589-598
  • Journal article (peer-reviewed)abstract
    • The Low-Frequency Array (LOFAR) is under construction in the Netherlands and in several surrounding European countries. In this contribution, we describe the layout and design of the telescope, with particular emphasis on the imaging characteristics of the array when used in its 'standard imaging' mode. After briefly reviewing the calibration and imaging software used for LOFAR image processing, we show some recent results from the ongoing imaging commissioning efforts. We conclude by summarizing future prospects for the use of LOFAR in observing the little-explored low-frequency Universe.
  •  
12.
  • Pilia, M., et al. (author)
  • Wide-band, low-frequency pulse profiles of 100 radio pulsars with LOFAR
  • 2016
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 586
  • Journal article (peer-reviewed)abstract
    • Context. LOFAR offers the unique capability of observing pulsars across the 10−240  MHz frequency range with a fractional bandwidth of roughly 50%. This spectral range is well suited for studying the frequency evolution of pulse profile morphology caused by both intrinsic and extrinsic effects such as changing emission altitude in the pulsar magnetosphere or scatter broadening by the interstellar medium, respectively.Aims. The magnitude of most of these effects increases rapidly towards low frequencies. LOFAR can thus address a number of open questions about the nature of radio pulsar emission and its propagation through the interstellar medium.Methods. We present the average pulse profiles of 100 pulsars observed in the two LOFAR frequency bands: high band (120–167 MHz, 100 profiles) and low band (15–62 MHz, 26 profiles). We compare them with Westerbork Synthesis Radio Telescope (WSRT) and Lovell Telescope observations at higher frequencies (350 and 1400 MHz) to study the profile evolution. The profiles were aligned in absolute phase by folding with a new set of timing solutions from the Lovell Telescope, which we present along with precise dispersion measures obtained with LOFAR.Results. We find that the profile evolution with decreasing radio frequency does not follow a specific trend; depending on the geometry of the pulsar, new components can enter into or be hidden from view. Nonetheless, in general our observations confirm the widening of pulsar profiles at low frequencies, as expected from radius-to-frequency mapping or birefringence theories.
  •  
13.
  • Shulevski, A., et al. (author)
  • The peculiar radio galaxy 4C 35.06 : a case for recurrent AGN activity?
  • 2015
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 579, s. 1-10
  • Journal article (peer-reviewed)abstract
    • Using observations obtained with the LOw Fequency ARray (LOFAR), the Westerbork Synthesis Radio Telescope (WSRT) and archival Very Large Array (VLA) data, we have traced the radio emission to large scales in the complex source 4C 35.06 located in the core of the galaxy cluster Abell 407. At higher spatial resolution (~ 4″), the source was known to have two inner radio lobes spanning 31 kpc and a diffuse, low-brightness extension running parallel to them, offset by about 11 kpc (in projection). At 62 MHz, we detect the radio emission of this structure extending out to 210 kpc. At 1.4 GHz and intermediate spatial resolution (~ 30″), the structure appears to have a helical morphology. We have derived the characteristics of the radio spectral index across the source. We show that the source morphology is most likely the result of at least two episodes of AGN activity separated by a dormant period of around 35 Myr. The outermost regions of radio emission have a steep spectral index (α< − 1), indicative of old plasma. We connect the spectral index properties of the resolved source structure with the integrated fluxdensity spectral index of 4C 35.06 and suggest an explanation for its unusual integrated flux density spectral shape (a moderately steep power law with no discernible spectral break), possibly providing a proxy for future studies of more distant radio sources through inferring their detailed spectral index properties and activity history from their integrated spectral indices. The AGN is hosted by one of the galaxies located in the cluster core of Abell 407. We propose that it is intermittently active as it moves in the dense environment in the cluster core. In this scenario, the AGN turned on sometime in the past, and has produced the helical pattern of emission, possibly a sign of jet precession/merger during that episode of activity. Using LOFAR, we can trace the relic plasma from that episode of activity out to greater distances from the core than ever before. Using the the WSRT, we detect H I in absorption against the center of the radio source. The absorption profile is relatively broad (FWHM of 288 kms-1), similar to what is found in other clusters. The derived column density is NHI ~ 4 × 1020 cm-2 for a Tspin = 100 K. This detection supports the connection – already suggested for other restarted radio sources – between the presence of cold gas and restarting activity. The cold gas appears to be dominated by a blue-shifted component although the broad H I profile could also include gas with different kinematics. Understanding the duty cycle of the radio emission as well as the triggering mechanism for starting (or restarting) the radio-loud activity can provide important constraints to quantify the impact of AGN feedback on galaxy evolution. The study of these mechanisms at low frequencies using morphological and spectral information promises to bring new important insights in this field.
  •  
14.
  • Sobey, C., et al. (author)
  • LOFAR discovery of a quiet emission mode in PSR B0823+26
  • 2015
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 451, s. 2493-2506
  • Journal article (peer-reviewed)abstract
    • PSR B0823+26, a 0.53-s radio pulsar, displays a host of emission phenomena over time-scales of seconds to (at least) hours, including nulling, subpulse drifting, and mode-changing. Studying pulsars like PSR B0823+26 provides further insight into the relationship between these various emission phenomena and what they might teach us about pulsar magnetospheres. Here we report on the LOFAR (Low-Frequency Array) discovery that PSR B0823+26 has a weak and sporadically emitting ‘quiet’ (Q) emission mode that is over 100 times weaker (on average) and has a nulling fraction forty-times greater than that of the more regularly-emitting ‘bright’ (B) mode. Previously, the pulsar has been undetected in the Q mode, and was assumed to be nulling continuously. PSR B0823+26 shows a further decrease in average flux just before the transition into the B mode, and perhaps truly turns off completely at these times. Furthermore, simultaneous observations taken with the LOFAR, Westerbork, Lovell, and Effelsberg telescopes between 110 MHz and 2.7 GHz demonstrate that the transition between the Q mode and B mode occurs within one single rotation of the neutron star, and that it is concurrent across the range of frequencies observed.
  •  
15.
  • Tasse, C., et al. (author)
  • LOFAR calibration and wide-field imaging
  • 2012
  • In: Comptes Rendus Physique. - : Elsevier BV. - 1878-1535 .- 1631-0705. ; 13:1, s. 28-32
  • Journal article (other academic/artistic)abstract
    • LOFAR is a revolutionary instrument, operating at low frequencies (nu less than or similar to 240 MHz). It will drive major breakthroughs in the area of observational cosmology, but its use requires the development of challenging techniques and algorithms. Since its field of view and sensitivity are increased by orders of magnitude as compared to the older generation of instruments, new technical problems have to be addressed. The LOFAR survey team is in charge of commissioning the first LOFAR data produced in the imager mode as part of building the imaging pipeline. We are developing algorithms to tackle the problems associated with calibration (ionosphere, beam, etc.) and wide-field imaging for the achievement of the deep extragalactic surveys. New types of problems arise in that context, and notions such as algorithmic complexity and parallelism become fundamental.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 11-15 of 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view