SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(WFRF:(Edstrom E)) srt2:(2020-2024)"

Sökning: (WFRF:(Edstrom E)) > (2020-2024)

  • Resultat 11-20 av 45
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  • Burstrom, G, et al. (författare)
  • Feasibility and accuracy of a robotic guidance system for navigated spine surgery in a hybrid operating room: a cadaver study
  • 2020
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10:1, s. 7522-
  • Tidskriftsartikel (refereegranskat)abstract
    • The combination of navigation and robotics in spine surgery has the potential to accurately identify and maintain bone entry position and planned trajectory. The goal of this study was to examine the feasibility, accuracy and efficacy of a new robot-guided system for semi-automated, minimally invasive, pedicle screw placement. A custom robotic arm was integrated into a hybrid operating room (OR) equipped with an augmented reality surgical navigation system (ARSN). The robot was mounted on the OR-table and used to assist in placing Jamshidi needles in 113 pedicles in four cadavers. The ARSN system was used for planning screw paths and directing the robot. The robot arm autonomously aligned with the planned screw trajectory, and the surgeon inserted the Jamshidi needle into the pedicle. Accuracy measurements were performed on verification cone beam computed tomographies with the planned paths superimposed. To provide a clinical grading according to the Gertzbein scale, pedicle screw diameters were simulated on the placed Jamshidi needles. A technical accuracy at bone entry point of 0.48 ± 0.44 mm and 0.68 ± 0.58 mm was achieved in the axial and sagittal views, respectively. The corresponding angular errors were 0.94 ± 0.83° and 0.87 ± 0.82°. The accuracy was statistically superior (p < 0.001) to ARSN without robotic assistance. Simulated pedicle screw grading resulted in a clinical accuracy of 100%. This study demonstrates that the use of a semi-automated surgical robot for pedicle screw placement provides an accuracy well above what is clinically acceptable.
  •  
12.
  •  
13.
  • Cewe, P, et al. (författare)
  • Evaluation of a Novel Teleradiology Technology for Image-Based Distant Consultations: Applications in Neurosurgery
  • 2021
  • Ingår i: Diagnostics (Basel, Switzerland). - : MDPI AG. - 2075-4418. ; 11:8
  • Tidskriftsartikel (refereegranskat)abstract
    • In emergency settings, fast access to medical imaging for diagnostic is pivotal for clinical decision making. Hence, a need has emerged for solutions that allow rapid access to images on small mobile devices (SMD) without local data storage. Our objective was to evaluate access times to full quality anonymized DICOM datasets, comparing standard access through an authorized hospital computer (AHC) to a zero-footprint teleradiology technology (ZTT) used on a personal computer (PC) or SMD using national and international networks at a regional neurosurgical center. Image datasets were sent to a senior neurosurgeon, outside the hospital network using either an AHC and a VPN connection or a ZTT (Image Over Globe (IOG)), on a PC or an SMD. Time to access DICOM images was measured using both solutions. The mean time using AHC and VPN was 250 ± 10 s (median 249 s (233–274)) while the same procedure using IOG took 50 ± 8 s (median 49 s (42–60)) on a PC and 47 ± 20 s (median 39 (33–88)) on a SMD. Similarly, an international consultation was performed requiring 23 ± 5 s (median 21 (16–33)) and 27 ± 1 s (median 27 (25–29)) for PC and SMD respectively. IOG is a secure, rapid and easy to use telemedicine technology facilitating efficient clinical decision making and remote consultations.
  •  
14.
  • Cewe, P, et al. (författare)
  • Radiation distribution in a hybrid operating room, utilizing different X-ray imaging systems: investigations to minimize occupational exposure
  • 2022
  • Ingår i: Journal of neurointerventional surgery. - : BMJ. - 1759-8486 .- 1759-8478. ; 14:11, s. 1139-1144
  • Tidskriftsartikel (refereegranskat)abstract
    • To reduce occupational radiation exposure in a hybrid operating room (OR) used for three-dimensional (3D) image guided spine procedures. The effects of staff positioning, different X-ray imaging systems, and freestanding radiation protection shields (RPSs) were considered.MethodsAn anthropomorphic phantom was imaged with a robotic ceiling mounted hybrid OR C-arm cone beam CT (hCBCT), a mobile O-arm CBCT (oCBCT), and a mobile two-dimensional C-arm fluoroscopy system. The resulting scatter doses were measured at different positions in the hybrid OR using active personal dosimeters and an ionization chamber. Two types of RPSs were evaluated.ResultsUsing the hCBCT system instead of the oCBCT system reduced the occupational radiation dose on average by 22%. At 200 cm from the phantom, scatter doses from the hCBCT were 27% lower compared with the oCBCT. One rotational acquisition with hCBCT or oCBCT corresponded to 12 or 16 min of fluoroscopy with the C-arm, respectively. The scatter dose decreased by more than 90% behind an RPS. However, the protection was slightly less effective at 60 cm behind the RPS, due to tertiary scatter from the surroundings.ConclusionsFor 3D image guided spine procedures in the hybrid OR, occupational radiation exposure is lowered by using hCBCT rather than oCBCT. Radiation exposure can also be decreased by optimal staff positioning in the OR, considering distance to the source and positioning relative to the walls, ceiling, and RPS. In this setting and workflow, staff can use RPSs instead of heavy aprons during intraoperative CBCT imaging, to achieve effective whole body dose reduction with improved comfort.
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  • Edstrom, K., et al. (författare)
  • The NordBatt Conferences: The Journey so Far and the Future Ahead
  • 2023
  • Ingår i: Batteries and Supercaps. - 2566-6223. ; 6:11
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • All great things have humble beginnings. In 2013 when NordBatt started, we had no lithium-ion battery manufacturing in the Nordic countries and we had rather few EVs on the roads, although things were clearly starting to move – Tesla Model S in fact topped the monthly new car sales of Norway in September that very year. Yet, even if the field was advancing and lively, relatively few Nordic research groups were doing any kind of battery R&D. Now, in 2023, almost everything is different; batteries and “electrify everything” are seen, not only by us, as the next industrial revolution – it is a topic gathering considerably many more actors in academia as well as in the whole ecosystem of batteries.
  •  
19.
  •  
20.
  • El-Hajj, VG, et al. (författare)
  • Current knowledge on spinal meningiomas: a systematic review protocol
  • 2022
  • Ingår i: BMJ open. - : BMJ. - 2044-6055. ; 12:6, s. e061614-
  • Tidskriftsartikel (refereegranskat)abstract
    • Meningiomas are primary central nervous system tumours that arise from both cranial and spinal meninges. Spinal meningiomas occur less frequently than their cranial counterparts and are consequently given less attention in the literature. Therefore, systematic studies are needed to summarise the current knowledge on spinal meningiomas, providing a solid evidence base for treatment strategies. This systematic review of the literature will therefore assess studies describing spinal meningiomas, their epidemiology, diagnostics, treatment and outcomes.Methods and analysisElectronic databases, including PubMed, Web of Science and Embase, will be searched using the keywords “spinal” and “meningioma”. The search will be set to provide only English studies published after 2000 to avoid any conflicts regarding terminology and classification, as well as to reflect the current status. Case reports, editorials, letters and reviews will also be excluded. Reference lists of relevant records will also be searched. Identified studies will be screened for inclusion, by one reviewer in a first step and then three in the next step to decrease the risk of bias. The results will be categorised to allow for a structured summary of the outcomes and their evidence grade conforming to the Grading of Recommendations, Assessment, Development and Evaluation approach. Categories may include: epidemiology, histopathology, radiological diagnostics, surgery, complications, non-surgical or adjuvant treatments, disease outcomes and predictors, and lastly recurrence. This review will summarise the current knowledge on spinal meningiomas to allow for a better understanding of the disease and contribute to improve its management. For clinicians, the systematic collection and grading of available evidence may aid in decision making and for those seeking to further the scientific field, this review may help to identify areas where knowledge is currently lacking.Ethics and disseminationEthics approval was not required for our systematic review as it is based on existing publications. The results will be disseminated via submission for publication in a peer-reviewed journal.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-20 av 45

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy