SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(WFRF:(Newcombe Virginia)) "

Sökning: (WFRF:(Newcombe Virginia))

  • Resultat 11-20 av 23
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  • Needham, Edward J, et al. (författare)
  • Complex Autoantibody Responses Occur following Moderate to Severe Traumatic Brain Injury.
  • 2021
  • Ingår i: Journal of immunology. - : The American Association of Immunologists. - 1550-6606 .- 0022-1767. ; 207:1, s. 90-100
  • Tidskriftsartikel (refereegranskat)abstract
    • Most of the variation in outcome following severe traumatic brain injury (TBI) remains unexplained by currently recognized prognostic factors. Neuroinflammation may account for some of this difference. We hypothesized that TBI generated variable autoantibody responses between individuals that would contribute to outcome. We developed a custom protein microarray to detect autoantibodies to both CNS and systemic Ags in serum from the acute-phase (the first 7 d), late (6-12 mo), and long-term (6-13 y) intervals after TBI in human patients. We identified two distinct patterns of immune response to TBI. The first was a broad response to the majority of Ags tested, predominantly IgM mediated in the acute phase, then IgG dominant at late and long-term time points. The second was responses to specific Ags, most frequently myelin-associated glycopeptide (MAG), which persisted for several months post-TBI but then subsequently resolved. Exploratory analyses suggested that patients with a greater acute IgM response experienced worse outcomes than predicted from current known risk factors, suggesting a direct or indirect role in worsening outcome. Furthermore, late persistence of anti-MAG IgM autoantibodies correlated with raised serum neurofilament light concentrations at these time points, suggesting an association with ongoing neurodegeneration over the first year postinjury. Our results show that autoantibody production occurs in some individuals following TBI, can persist for many years, and is associated with worse patient outcome. The complexity of responses means that conventional approaches based on measuring responses to single antigenic targets may be misleading.
  •  
12.
  • Newcombe, Virginia F J, et al. (författare)
  • Post-acute blood biomarkers and disease progression in traumatic brain injury.
  • 2022
  • Ingår i: Brain : a journal of neurology. - : Oxford University Press (OUP). - 1460-2156. ; 145:6, s. 2064-2076
  • Tidskriftsartikel (refereegranskat)abstract
    • There is substantial interest in the potential for traumatic brain injury to result in progressive neurological deterioration. While blood biomarkers such as glial fibrillary acid protein and neurofilament light have been widely explored in characterising acute traumatic brain injury, their use in the chronic phase is limited. Given increasing evidence that these proteins may be markers of ongoing neurodegeneration in a range of diseases, we examined their relationship to imaging changes and functional outcome in the months to years following traumatic brain injury. Two-hundred and three patients were recruited in two separate cohorts; six months post-injury (n=165); and >5 years post-injury (n=38; 12 of whom also provided data ∼8 months post-TBI). Subjects underwent blood biomarker sampling (n=199) and magnetic resonance imaging (n=172; including diffusion tensor imaging). Data from patient cohorts were compared to 59 healthy volunteers and 21 non-brain injury trauma controls. Mean diffusivity and fractional anisotropy were calculated in cortical grey matter, deep grey matter and whole brain white matter. Accelerated brain ageing was calculated at a whole brain level as the predicted age difference defined using T1-weighted images, and at a voxel-based level as the annualised Jacobian determinants in white matter and grey matter, referenced to a population of 652 healthy control subjects. Serum neurofilament light concentrations were elevated in the early chronic phase. While GFAP values were within the normal range at ∼8 months, many patients showed a secondary and temporally distinct elevations up to >5 years after injury. Biomarker elevation at six months was significantly related to metrics of microstructural injury on diffusion tensor imaging. Biomarker levels at ∼8 months predicted white matter volume loss at >5 years, and annualised brain volume loss between ∼8 months and 5 years. Patients who worsened functionally between ∼8 months and >5 years showed higher than predicted brain age and elevated neurofilament light levels. Glial fibrillary acid protein and neurofilament light levels can remain elevated months to years after traumatic brain injury, and show distinct temporal profiles. These elevations correlate closely with microstructural injury in both grey and white matter on contemporaneous quantitative diffusion tensor imaging. Neurofilament light elevations at ∼8 months may predict ongoing white matter and brain volume loss over >5 years of follow up. If confirmed, these findings suggest that blood biomarker levels at late time points could be used to identify traumatic brain injury survivors who are at high risk of progressive neurological damage.
  •  
13.
  • Posti, Jussi P., et al. (författare)
  • SERUM METABOLITES ASSOCIATE WITH HEAD COMPUTED TOMOGRAPHY FINDINGS FOLLOWING TRAUMATIC BRAIN INJURY
  • 2018
  • Ingår i: Journal of Neurotrauma. - : Mary Ann Liebert. - 0897-7151 .- 1557-9042. ; 35:16, s. A67-A67
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • There is a need to rapidly detect patients with traumatic brain injury (TBI) who require head computed tomography (CT). Given the energy crisis in the brain following TBI, we hypothesized that serum metabolomics would be a useful tool for developing a set of bio-markers to determine the need for CT and to distinguish between different types of injuries observed. Logistic regression models using metabolite data from the discovery cohort (n=144, Turku, Finland) were used to distinguish between patients with traumatic intracranial findings and negative findings on head CT. The resultant models were then tested in the validation cohort (n=66, Cambridge, UK). The levels of glial fibrillary acidic protein and ubiquitin C-terminalhydrolase-L1 were also quantified in the serum from the same patients. Despite there being significant differences in the protein bio-markers in patients with TBI, the model that determined the need for a CT scan validated poorly (AUC=0.64: Cambridge patients). However, using a combination of six metabolites (two amino acids, thre esugar derivatives and one ketoacid) it was possible to discriminate patients with intracranial abnormalities on CT and patients with a normal CT (AUC=0.77 in Turku patients and AUC=0.73 in Cambridge patients). Furthermore, a combination of three metabolites could distinguish between diffuse brain injuries and mass lesions (AUC=0.87 in Turku patients and AUC=0.68 in Cambridge pa-tients). This study identifies a set of validated serum polar metabolites, which associate with the need for a CT scan. Additionally, serum metabolites can also predict the nature of the brain injury. These metabolite markers may prevent unnecessary CT scans, thus reducing the cost of diagnostics and radiation load.
  •  
14.
  • Richter, Sophie, et al. (författare)
  • Prognostic Value of Serum Biomarkers in Patients With Moderate-Severe Traumatic Brain Injury, Differentiated by Marshall Computer Tomography Classification
  • 2023
  • Ingår i: Journal of Neurotrauma. - : Mary Ann Liebert. - 0897-7151 .- 1557-9042. ; 40:21-22, s. 2297-2310
  • Tidskriftsartikel (refereegranskat)abstract
    • Prognostication is challenging in patients with traumatic brain injury (TBI) in whom computed tomography (CT) fails to fully explain a low level of consciousness. Serum biomarkers reflect the extent of structural damage in a different way than CT does, but it is unclear whether biomarkers provide additional prognostic value across the range of CT abnormalities. This study aimed to determine the added predictive value of biomarkers, differentiated by imaging severity. This prognostic study used data from the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study (2014-2017). The analysis included patients aged & GE;16 years with a moderate-severe TBI (Glasgow Coma Scale [GCS] <13) who had an acute CT and serum biomarkers obtained & LE;24h of injury. Of six protein biomarkers (GFAP, NFL, NSE, S100B, Tau, UCH-L1), the most prognostic panel was selected using lasso regression. The performance of established prognostic models (CRASH and IMPACT) was assessed before and after the addition of the biomarker panel and compared between patients with different CT Marshall scores (Marshall score <3 vs. Marshall score & GE;3). Outcome was assessed at six months post-injury using the extended Glasgow Outcome Scale (GOSE), and dichotomized into favorable and unfavorable (GOSE <5). We included 872 patients with moderate-severe TBI. The mean age was 47 years (range 16-95); 647 (74%) were male and 438 (50%) had a Marshall CT score <3. The serum biomarkers GFAP, NFL, S100B and UCH-L1 provided complementary prognostic information; NSE and Tau showed no added value. The addition of the biomarker panel to established prognostic models increased the area under the curve (AUC) by 0.08 and 0.03, and the explained variation in outcome by 13-14% and 7-8%, for patients with a Marshall score of <3 and & GE;3, respectively. The incremental AUC of biomarkers for individual models was significantly greater when the Marshall score was <3 compared with & GE;3 (p < 0.001). Serum biomarkers improve outcome prediction after moderate-severe TBI across the range of imaging severities and especially in patients with a Marshall score <3.
  •  
15.
  • Richter, Sophie, et al. (författare)
  • Serum biomarkers identify critically ill traumatic brain injury patients for MRI
  • 2022
  • Ingår i: Critical Care. - : BioMed Central (BMC). - 1364-8535 .- 1466-609X. ; 26:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Magnetic resonance imaging (MRI) carries prognostic importance after traumatic brain injury (TBI), especially when computed tomography (CT) fails to fully explain the level of unconsciousness. However, in critically ill patients, the risk of deterioration during transfer needs to be balanced against the benefit of detecting prognostically relevant information on MRI. We therefore aimed to assess if day of injury serum protein biomarkers could identify critically ill TBI patients in whom the risks of transfer are compensated by the likelihood of detecting management-altering neuroimaging findings.METHODS: Data were obtained from the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study. Eligibility criteria included: TBI patients aged ≥ 16 years, Glasgow Coma Score (GCS) < 13 or patient intubated with unrecorded pre-intubation GCS, CT with Marshall score < 3, serum biomarkers (GFAP, NFL, NSE, S100B, Tau, UCH-L1) sampled ≤ 24 h of injury, MRI < 30 days of injury. The degree of axonal injury on MRI was graded using the Adams-Gentry classification. The association between serum concentrations of biomarkers and Adams-Gentry stage was assessed and the optimum threshold concentration identified, assuming different minimum sensitivities for the detection of brainstem injury (Adams-Gentry stage 3). A cost-benefit analysis for the USA and UK health care settings was also performed. RESULTS: Among 65 included patients (30 moderate-severe, 35 unrecorded) axonal injury was detected in 54 (83%) and brainstem involvement in 33 (51%). In patients with moderate-severe TBI, brainstem injury was associated with higher concentrations of NSE, Tau, UCH-L1 and GFAP. If the clinician did not want to miss any brainstem injury, NSE could have avoided MRI transfers in up to 20% of patients. If a 94% sensitivity was accepted considering potential transfer-related complications, GFAP could have avoided 30% of transfers. There was no added net cost, with savings up to £99 (UK) or $612 (US). No associations between proteins and axonal injury were found in intubated patients without a recorded pre-intubation GCS.CONCLUSIONS: Serum protein biomarkers show potential to safely reduce the number of transfers to MRI in critically ill patients with moderate-severe TBI at no added cost.
  •  
16.
  • Thomas, Ilias, et al. (författare)
  • Serum lipidome associates with neuroimaging features in patients with traumatic brain injury
  • 2024
  • Ingår i: iScience. - : Cell Press. - 2589-0042. ; 27:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Acute traumatic brain injury (TBI) is associated with substantial abnormalities in lipid biology, including changes in the structural lipids that are present in the myelin in the brain. We investigated the relationship between traumatic microstructural changes in white matter from magnetic resonance imaging (MRI) and quantitative lipidomic changes from blood serum. The study cohort included 103 patients from the Collaborative European NeuroTrauma Effectiveness Research in TBI (CENTER-TBI) study. Diffusion tensor fitting generated fractional anisotropy (FA) and mean diffusivity (MD) maps for the MRI scans while ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry was applied to analyze the lipidome. Increasing severity of TBI was associated with higher MD and lower FA values, which scaled with different lipidomic signatures. There appears to be consistent patterns of lipid changes associating with the specific microstructure changes in the CNS white matter, but also regional specificity, suggesting that blood-based lipidomics may provide an insight into the underlying pathophysiology of TBI.
  •  
17.
  • Tuure, Juho, et al. (författare)
  • Late Blood Levels of Neurofilament Light Correlate With Outcome in Patients With Traumatic Brain Injury.
  • 2024
  • Ingår i: Journal of Neurotrauma. - 0897-7151. ; 41:3-4, s. 359-368
  • Tidskriftsartikel (refereegranskat)abstract
    • Neurofilament light (NF-L) is an axonal protein that has shown promise as a traumatic brain injury (TBI) biomarker. Serum NF-L shows a rather slow rise after injury, peaking after 1-2 weeks, although some studies suggest that it may remain elevated for months after TBI. The aim of this study was to examine if plasma NF-L levels several months after the injury correlate with functional outcome in patients who have sustained TBIs of variable initial severity. In this prospective study of 178 patients with TBI and 40 orthopedic injury controls, we measured plasma NF-L levels in blood samples taken at the follow-up appointment on average 9 months after injury. Patients with TBI were divided into two groups (mild [mTBI] vs. moderate-to-severe [mo/sTBI]) according to the severity of injury assessed with the Glasgow Coma Scale upon admission. Recovery and functional outcome were assessed using the Extended Glasgow Outcome Scale (GOSE). Higher levels of NF-L at the follow-up correlated with worse outcome in patients with moderate-to-severe TBI (Spearman's rho=-0.18; p<0.001). In addition, in computed tomography-positive mTBI group, the levels of NF-L were significantly lower in patients with GOSE 7-8 (median 18.14; interquartile range [IQR] 9.82, 32.15) when compared with patients with GOSE <7 (median 73.87; IQR 32.17, 110.54; p=0.002). In patients with mTBI, late NF-L levels do not seem to provide clinical benefit for late-stage assessment, but in patients with initially mo/sTBI, persistently elevated NF-L levels are associated with worse outcome after TBI and may reflect ongoing brain injury.
  •  
18.
  • Whitehouse, Daniel P., et al. (författare)
  • Blood biomarkers and structural imaging correlations post-traumatic brain injury : A systematic review
  • 2021
  • Ingår i: Neurosurgery. - : Wolters Kluwer. - 0148-396X .- 1524-4040. ; 90:2, s. 170-179
  • Forskningsöversikt (refereegranskat)abstract
    • Background: Blood biomarkers are of increasing importance in the diagnosis and assessment of traumatic brain injury (TBI). However, the relationship between them and lesions seen on imaging remains unclear.Objective: To perform a systematic review of the relationship between blood biomarkers and intracranial lesion types, intracranial lesion injury patterns, volume/number of intracranial lesions, and imaging classification systems.Methods: We searched Medical Literature Analysis and Retrieval System Online, Excerpta Medica dataBASE, and Cumulative Index to Nursing and Allied Health Literature from inception to May 2021, and the references of included studies were also screened. Heterogeneity in study design, biomarker types, imaging modalities, and analyses inhibited quantitative analysis, with a qualitative synthesis presented.Results: Fifty-nine papers were included assessing one or more biomarker to imaging comparisons per paper: 30 assessed imaging classifications or injury patterns, 28 assessed lesion type, and 11 assessed lesion volume or number. Biomarker concentrations were associated with the burden of brain injury, as assessed by increasing intracranial lesion volume, increasing numbers of traumatic intracranial lesions, and positive correlations with imaging classification scores. There were inconsistent findings associating different biomarkers with specific imaging phenotypes including diffuse axonal injury, cerebral edema, and intracranial hemorrhage.Conclusion: Blood-based biomarker concentrations after TBI are consistently demonstrated to correlate burden of intracranial disease. The relation with specific injury types is unclear suggesting a lack of diagnostic specificity and/or is the result of the complex and heterogeneous nature of TBI.
  •  
19.
  • Whitehouse, Daniel P., et al. (författare)
  • Relationship of admission blood proteomic biomarkers levels to lesion type and lesion burden in traumatic brain injury : A CENTER-TBI study
  • 2022
  • Ingår i: EBioMedicine. - : Elsevier. - 2352-3964. ; 75
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: We aimed to understand the relationship between serum biomarker concentration and lesion type and volume found on computed tomography (CT) following all severities of TBI.Methods: Concentrations of six serum biomarkers (GFAP, NFL, NSE, S100B, t-tau and UCH-L1) were measured in samples obtained <24 hours post-injury from 2869 patients with all severities of TBI, enrolled in the CENTER-TBI prospective cohort study (NCT02210221). Imaging phenotypes were defined as intraparenchymal haemorrhage (IPH), oedema, subdural haematoma (SDH), extradural haematoma (EDH), traumatic subarachnoid haemorrhage (tSAH), diffuse axonal injury (DAI), and intraventricular haemorrhage (IVH). Multivariable polynomial regression was performed to examine the association between biomarker levels and both distinct lesion types and lesion volumes. Hierarchical clustering was used to explore imaging phenotypes; and principal component analysis and k-means clustering of acute biomarker concentrations to explore patterns of biomarker clustering.Findings: 2869 patient were included, 68% (n=1946) male with a median age of 49 years (range 2-96). All severities of TBI (mild, moderate and severe) were included for analysis with majority (n=1946, 68%) having a mild injury (GCS 13-15). Patients with severe diffuse injury (Marshall III/IV) showed significantly higher levels of all measured biomarkers, with the exception of NFL, than patients with focal mass lesions (Marshall grades V/VI). Patients with either DAI+IVH or SDH+IPH+tSAH, had significantly higher biomarker concentrations than patients with EDH. Higher biomarker concentrations were associated with greater volume of IPH (GFAP, S100B, t-tau;adj r2 range:0·48-0·49; p<0·05), oedema (GFAP, NFL, NSE, t-tau, UCH-L1;adj r2 range:0·44-0·44; p<0·01), IVH (S100B;adj r2 range:0.48-0.49; p<0.05), Unsupervised k-means biomarker clustering revealed two clusters explaining 83·9% of variance, with phenotyping characteristics related to clinical injury severity.Interpretation: Interpretation: Biomarker concentration within 24 hours of TBI is primarily related to severity of injury and intracranial disease burden, rather than pathoanatomical type of injury.
  •  
20.
  • Wilson, Lindsay, et al. (författare)
  • Tailoring multi-dimensional outcomes to level of functional recovery after traumatic brain injury
  • 2022
  • Ingår i: Journal of Neurotrauma. - : Mary Ann Liebert. - 0897-7151 .- 1557-9042. ; 39:19-20, s. 1363-1381
  • Tidskriftsartikel (refereegranskat)abstract
    • There is increasing emphasis on assessing multi-dimensional outcomes in traumatic brain injury (TBI), but achieving this aim is hampered by a plethora of overlapping assessment tools. There is a clear need for advice on the choice of outcomes and we examined level of functional recovery as a framework to guide selection of assessments. In this cohort study we analysed cross-sectional data from 2604 patients enrolled in the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) project. Patients were followed up 6 months after injury and assessed on the Glasgow Outcome Scale-Extended (GOSE), cognitive tests, and patient-reported outcomes. We describe assessment completeness and prevalence of impairment. Relationships between outcomes were visualized using UpSet plots and hierarchical cluster analysis. GOSE categories varied markedly for both completion rates, 34-91% for patient-reported outcomes and 9-81% for cognitive tests, and prevalence of impairment, 3-82% for patient-reported outcomes and 9-59% for cognitive tests. In complete case samples, the GOSE identified impairment in 59-61%, whereas the most impaired patient-reported outcome was the Short Form-12 version 2 (SF-12v2) Physical Component Summary (28% overall), and the most impaired cognitive test was Trail Making Test (TMT) Part A (19% overall). The findings show that degree of disability is a key context of use for cognitive tests and patient-reported outcomes. Level of functional recovery provides a guide to the feasibility of different types of assessment and the likelihood of impairment, and can help tailor suitable assessment approaches in clinical practice and research studies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-20 av 23
Typ av publikation
tidskriftsartikel (21)
konferensbidrag (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (22)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Menon, David K. (18)
Newcombe, Virginia F ... (14)
Tenovuo, Olli (8)
Maas, Andrew I. R. (8)
Büki, Andras, 1966- (7)
Posti, Jussi P. (7)
visa fler...
Newcombe, Virginia (7)
Brorsson, Camilla (6)
Czeiter, Endre (6)
Maanpää, Henna-Riikk ... (6)
Blennow, Kaj, 1958 (5)
Zetterberg, Henrik, ... (5)
Koskinen, Lars-Owe D ... (5)
Ercole, Ari (5)
Amrein, Krisztina (5)
Menon, David (5)
Orešič, Matej, 1967- (4)
Smielewski, Peter (4)
Sundström, Nina (4)
Wang, Kevin K.W. (4)
Richter, Sophie (4)
Verheyden, Jan (4)
Yang, Zhihui (4)
Frantzén, Janek (4)
Hyötyläinen, Tuulia, ... (3)
Stocchetti, Nino (3)
Steyerberg, Ewout (3)
van Gils, Mark (3)
Steyerberg, Ewout W. (3)
Winzeck, Stefan (3)
Mondello, Stefania (3)
Mohammadian, Mehrbod (3)
Lingsma, Hester F. (3)
Polinder, Suzanne (3)
Katila, Ari J. (3)
Mattila, Ismo (2)
Ashton, Nicholas J. (2)
Simrén, Joel, 1996 (2)
von Steinbuechel, Ni ... (2)
Koskinen, Lars-Owe, ... (2)
Hutchinson, Peter (2)
Levin, Harvey (2)
Maegele, Marc (2)
Hutchinson, Peter Jo ... (2)
Lecky, Fiona (2)
Vyvere, Thijs Vande (2)
Xu, Haiyan (2)
Takala, Riikka Sk. (2)
Ala-Seppälä, Henna M ... (2)
Kyllönen, Anna (2)
visa färre...
Lärosäte
Örebro universitet (11)
Umeå universitet (10)
Karolinska Institutet (10)
Göteborgs universitet (5)
Lunds universitet (2)
Språk
Engelska (23)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (21)
Naturvetenskap (1)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy