SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "(WFRF:(Ribordy M.)) pers:(Wiebusch C. H.) pers:(Morse R.) srt2:(2001-2004)"

Search: (WFRF:(Ribordy M.)) pers:(Wiebusch C. H.) pers:(Morse R.) > (2001-2004)

  • Result 11-14 of 14
Sort/group result
   
EnumerationReferenceCoverFind
11.
  • Ahrens, J., et al. (author)
  • Search for point sources of high-energy neutrinos with AMANDA
  • 2003
  • In: Astrophysical Journal Letters. - : Institute of Physics (IOP). - 2041-8205 .- 0004-637X .- 1538-4357. ; 583:2 I, s. 1040-1057
  • Journal article (peer-reviewed)abstract
    • This paper describes the search for astronomical sources of high-energy neutrinos using the AMANDA-B10 detector, an array of 302 photomultiplier tubes used for the detection of Cerenkov light from upward-traveling neutrino-induced muons, buried deep in ice at the South Pole. The absolute pointing accuracy and angular resolution were studied by using coincident events between the AMANDA detector and two independent telescopes on the surface, the GASP air Cerenkov telescope and the SPASE extensive air shower array. Using data collected from 1997 April to October (130.1 days of live time), a general survey of the northern hemisphere revealed no statistically significant excess of events from any direction. The sensitivity for a flux of muon neutrinos is based on the effective detection area for through-going muons. Averaged over the northern sky, the effective detection area exceeds 10,000 m2 for E μ ≈ 10 TeV. Neutrinos generated in the atmosphere by cosmic-ray interactions were used to verify the predicted performance of the detector. For a source with a differential energy spectrum proportional to Eν -2 and declination larger than +40°, we obtain E2(dNν/dE) ≤ 10-6 GeV cm-2 s-1 for an energy threshold of 10 GeV.
  •  
12.
  • Niessen, Peter, et al. (author)
  • Recent results from the amanda experiment
  • 2003
  • In: Proceedings of 38th Rencontres de Moriond on Electroweak Interactions and Unified Theories 15-22 Mar 2003. Les Arcs, France.
  • Conference paper (peer-reviewed)abstract
    • AMANDA (Antarctic Muon And Neutrino Detector Array) is a neutrino telescope built under the southern polar icecap and its scope is to explore the possibility to detect high energy cosmic neutrinos. This should generate insight into the powerful celestial objects where acceleration mechanisms can bring up to 10 20   eV. We describe the achievements and results from the AMANDA-B10 prototype and the preliminary results from the current AMANDA-II detector which show dramatic increase in sensitivity.
  •  
13.
  • Wiebusch, C., et al. (author)
  • Results from AMANDA
  • 2002
  • In: Modern Physics Letters A. - : Institution of Electrical Engineers (IEE). - 0217-7323 .- 1793-6632. ; 17:31, s. 2019-2037
  • Journal article (peer-reviewed)abstract
    • The Antarctic Muon and Neutrino Detector Array (AMANDA) is a high-energy neutrino telescope operating at the geographic South Pole. It is a lattice of photomultiplier tubes buried deep in the polar ice. The primary goal of this detector is to discover astrophysical sources of high energy neutrinos. We describe the detector methods of operation and present results from the AMANDA-B10 prototype. We demonstrate the improved sensitivity of the current AMANDA-II detector. We conclude with an outlook to the envisioned sensitivity of the future IceCube detector.
  •  
14.
  • Ahrens, J., et al. (author)
  • Muon track reconstruction and data selection techniques in AMANDA
  • 2004
  • In: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier. - 0168-9002 .- 1872-9576. ; 524:1-3, s. 169-194
  • Journal article (peer-reviewed)abstract
    • The Antarctic Muon And Neutrino Detector Array (AMANDA) is a high-energy neutrino telescope operating at the geographic South Pole. It is a lattice of photo-multiplier tubes buried deep in the polar ice between 1500 and 2000 m. The primary goal of this detector is to discover astrophysical sources of high-energy neutrinos. A high-energy muon neutrino coming through the earth from the Northern Hemisphere can be identified by the secondary muon moving upward through the detector. The muon tracks are reconstructed with a maximum likelihood method. It models the arrival times and amplitudes of Cherenkov photons registered by the photo-multipliers. This paper describes the different methods of reconstruction, which have been successfully implemented within AMANDA. Strategies for optimizing the reconstruction performance and rejecting background are presented. For a typical analysis procedure the direction of tracks are reconstructed with about 2° accuracy. © 2004 Elsevier B.V. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 11-14 of 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view