SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0893 3952 srt2:(2020-2023)"

Sökning: L773:0893 3952 > (2020-2023)

  • Resultat 11-20 av 25
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  • Ferreyra Vega, Sandra, et al. (författare)
  • Spatial heterogeneity in DNA methylation and chromosomal alterations in diffuse gliomas and meningiomas
  • 2022
  • Ingår i: Modern Pathology. - : Elsevier BV. - 0893-3952. ; 35:11, s. 1551-1561
  • Tidskriftsartikel (refereegranskat)abstract
    • Adult-type diffuse gliomas and meningiomas are the most common primary intracranial tumors of the central nervous system. DNA methylation profiling is a novel diagnostic technique increasingly used also in the clinic. Although molecular heterogeneity is well described in these tumors, DNA methylation heterogeneity is less studied. We therefore investigated the intratumor genetic and epigenetic heterogeneity in diffuse gliomas and meningiomas, with focus on potential clinical implications. We further investigated tumor purity as a source for heterogeneity in the tumors. We analyzed genome-wide DNA methylation profiles generated from 126 spatially separated tumor biopsies from 39 diffuse gliomas and meningiomas. Moreover, we evaluated five methods for measurement of tumor purity and investigated intratumor heterogeneity by assessing DNA methylation-based classification, chromosomal copy number alterations and molecular markers. Our results demonstrated homogeneous methylation-based classification of IDH-mutant gliomas and further corroborates subtype heterogeneity in glioblastoma IDH-wildtype and high-grade meningioma patients after excluding samples with low tumor purity. We detected a large number of differentially methylated CpG sites within diffuse gliomas and meningiomas, particularly in tumors of higher grades. The presence of CDKN2A/B homozygous deletion differed in one out of two patients with IDH-mutant astrocytomas, CNS WHO grade 4. We conclude that diffuse gliomas and high-grade meningiomas are characterized by intratumor heterogeneity, which should be considered in clinical diagnostics and in the assessment of methylation-based and molecular markers.
  •  
12.
  •  
13.
  • Hofvander, Jakob, et al. (författare)
  • PHF1 fusions cause distinct gene expression and chromatin accessibility profiles in ossifying fibromyxoid tumors and mesenchymal cells
  • 2020
  • Ingår i: Modern Pathology. - : Elsevier BV. - 0893-3952. ; 33:7, s. 1331-1340
  • Tidskriftsartikel (refereegranskat)abstract
    • Ossifying fibromyxoid tumor (OFMT) is a soft tissue tumor frequently displaying gene fusions, most of which affect the PHF1 gene. PHF1 encodes plant homeodomain finger protein 1, which is involved in various processes regulating gene transcription, including those orchestrated by the polycomb repressor complex 2. Here, a series of 37 OFMTs, including 18 typical, 9 atypical, and 10 malignant variants, was analyzed with regard to transcriptomic features, gene fusion and copy number status, and/or single-nucleotide variants. The effects on gene expression and chromatin accessibility of three detected fusions (EP400–PHF1, MEAF6–PHF1, and PHF1–TFE3) were further evaluated in fibroblasts. Genomic imbalances showed a progression-related pattern, with more extensive copy number changes among atypical/malignant lesions than among typical OFMTs; loss of the RB1 gene was restricted to atypical/malignant OFMTs, occurring in one-third of the cases. RNA sequencing identified fusion transcripts in >80% of the cases analyzed, including a novel CSMD1–MEAF6. The gene-expression profile of OFMT was distinct from that of other soft tissue tumors, with extensive transcriptional upregulation of genes in OFMT. These findings were largely recapitulated in gene fusion-expressing fibroblast lines, suggesting that genes involved in, e.g., Wnt signaling and/or being regulated through trimethylation of lysine 27 in histone 3 (H3K27me3) are pivotal for OFMT development. The genes showing differentially higher expression in fusion-expressing cells paralleled increased chromatin accessibility, as revealed by ATAC sequencing. Thus, the present study suggests that OFMT develops through gene fusions that have extensive epigenetic consequences.
  •  
14.
  • Kang, E. Y., et al. (författare)
  • Refined cut-off for TP53 immunohistochemistry improves prediction of TP53 mutation status in ovarian mucinous tumors: implications for outcome analyses
  • 2021
  • Ingår i: Modern Pathology. - : Elsevier BV. - 0893-3952. ; 34:1, s. 194-206
  • Tidskriftsartikel (refereegranskat)abstract
    • TP53 mutations are implicated in the progression of mucinous borderline tumors (MBOT) to mucinous ovarian carcinomas (MOC). Optimized immunohistochemistry (INC) for TP53 has been established as a proxy for the TP53 mutation status in other ovarian tumor types. We aimed to confirm the ability of TP53 IHC to predict TP53 mutation status in ovarian mucinous tumors and to evaluate the association of TP53 mutation status with survival among patients with MBOT and MOC. Tumor tissue from an initial cohort of 113 women with MBOT/MOC was stained with optimized IHC for TP53 using tissue microarrays (75.2%) or full sections (24.8%) and interpreted using established criteria as normal or abnormal (overexpression, complete absence, or cytoplasmic). Cases were considered concordant if abnormal IHC staining predicted deleterious TP53 mutations. Discordant tissue microarray cases were re-evaluated on full sections and interpretational criteria were refined. The initial cohort was expanded to a total of 165 MBOT and 424 MOC for the examination of the association of survival with TP53 mutation status, assessed either by TP53 IHC and/or sequencing. Initially, 82/113 (72.6%) cases were concordant using the established criteria. Refined criteria for overexpression to account for intratumoral heterogeneity and terminal differentiation improved concordance to 93.8% (106/113). In the expanded cohort, 19.4% (32/165) of MBOT showed evidence for TP53 mutation and this was associated with a higher risk of recurrence, disease-specific death, and all-cause mortality (overall survival: HR = 4.6, 95% CI 1.5-14.3, p = 0.0087). Within MOC, 61.1% (259/424) harbored a TP53 mutation, but this was not associated with survival (overall survival, p = 0.77). TP53 IHC is an accurate proxy for TP53 mutation status with refined interpretation criteria accounting for intratumoral heterogeneity and terminal differentiation in ovarian mucinous tumors. TP53 mutation status is an important biomarker to identify MBOT with a higher risk of mortality.
  •  
15.
  • Kao, Yu Chien, et al. (författare)
  • Identification of COL1A1/2 Mutations and Fusions With Noncoding RNA Genes in Bizarre Parosteal Osteochondromatous Proliferation (Nora Lesion)
  • 2023
  • Ingår i: Modern Pathology : an official journal of the United States and Canadian Academy of Pathology, Inc. - : Elsevier BV. - 1530-0285. ; 36:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Bizarre parosteal osteochondromatous proliferation (BPOP) (Nora lesion) is a benign bone surface lesion, which most commonly occurs in the digits of young patients and has a high rate of recurrence. Histologically, it is composed of a mixture of disorganized bone, cartilage, and spindle cells in variable proportions and characterized by amorphous "blue bone" mineralization. Recurrent chromosomal abnormalities, including t(1;17)(q32-42;q21-23) and inv(7)(q21.1-22q31.3-32), have been reported in BPOP. However, the exact genes involved in the rearrangements remain unknown. In this study, we analyzed 8 BPOP cases affecting the fingers, toe, ulna, radius, and fibula of 5 female and 3 male patients, aged 5 to 68 years. RNA sequencing of 5 cases identified genetic fusions between COL1A2 and LINC-PINT in 3 cases and COL1A1::MIR29B2CHG fusion in 1, both validated using fluorescence in situ hybridization and reverse transcription (RT)-PCR. The remaining fusion-negative case harbored 3 COL1A1 mutations as revealed by whole-exome sequencing and confirmed using Sanger sequencing. All these genetic alterations were predicted to cause frameshift and/or truncation of COL1A1/2. The chromosomal locations of COL1A2 (7q21.3), LINC-PINT (7q32.3), COL1A1 (17q21.33), and MIR29B2CHG (1q32.2) were consistent with the breakpoints identified in the previous cytogenetic studies. Subsequent screening of 3 BPOPs using fluorescence in situ hybridization identified 1 additional case each with COL1A1 or COL1A2 rearrangement. Our findings are consistent with reported chromosomal abnormalities and implicate the disruption of type I collagen, and perhaps of either noncoding RNA gene as a tumor suppressor, in the tumorigenesis of BPOP. The prevalence and tumorigenic mechanisms of these COL1A1/2 alterations in BPOP require further investigation.
  •  
16.
  • Kindler, Csaba, et al. (författare)
  • A Deep Neural Network-Based Decision Support Tool for the Detection of Lymph Node Metastases in Colorectal Cancer Specimens
  • 2023
  • Ingår i: Modern Pathology. - : Elsevier. - 0893-3952 .- 1530-0285. ; 36:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The identification of lymph node metastases in colorectal cancer (CRC) specimens is crucial for the planning of postoperative treatment and can be a time-consuming task for pathologists. In this study, we developed a deep neural network (DNN) algorithm for the detection of metastatic CRC in digitized histologic sections of lymph nodes and evaluated its performance as a diagnostic support tool. First, the DNN algorithm was trained using pixel-level annotations of cancerous areas on 758 whole slide images (360 with cancerous areas). The algorithm's performance was evaluated on 74 whole slide images (43 with cancerous areas). Second, the algorithm was evaluated as a decision support tool on 288 whole slide images covering 1517 lymph node sections, randomized in 16 batches. Two senior pathologists (C.K. and C.O.) assessed each batch with and without the help of the algorithm in a 2 x 2 crossover design, with a washout period of 1 month in between. The time needed for the evaluation of each node section was recorded. The DNN algorithm achieved a median pixel-level accuracy of 0.952 on slides with cancerous areas and 0.996 on slides with benign samples. N+ disease (metastases, micrometastases, or tumor deposits) was present in 103 of the 1517 sections. The algorithm highlighted cancerous areas in 102 of these sections, with a sensitivity of 0.990. Assisted by the algorithm, the median time needed for evaluation was significantly shortened for both pathologists (median time for pathologist 1, 26 vs 14 seconds; P < .001; 95% CI, 11.0-12.0; median time for pathologist 2, 25 vs 23 seconds; P < .001; 95% CI, 2.0-4.0). Our DNN showed high accuracy for detecting metastatic CRC in digitized histologic sections of lymph nodes. This decision support tool has the potential to improve the diagnostic workflow by shortening the time needed for the evaluation of lymph nodes in CRC specimens without impairing diagnostic accuracy.
  •  
17.
  •  
18.
  • Nguyen, Huu-Giao, et al. (författare)
  • Image-based assessment of extracellular mucin-to-tumor area predicts consensus molecular subtypes (CMS) in colorectal cancer
  • 2022
  • Ingår i: Modern Pathology. - : Elsevier BV. - 0893-3952 .- 1530-0285. ; 35, s. 240-248
  • Tidskriftsartikel (refereegranskat)abstract
    • The backbone of all colorectal cancer classifications including the consensus molecular subtypes (CMS) highlights microsatellite instability (MSI) as a key molecular pathway. Although mucinous histology (generally defined as >50% extracellular mucin-to-tumor area) is a “typical” feature of MSI, it is not limited to this subgroup. Here, we investigate the association of CMS classification and mucin-to-tumor area quantified using a deep learning algorithm, and  the expression of specific mucins in predicting CMS groups and clinical outcome. A weakly supervised segmentation method was developed to quantify extracellular mucin-to-tumor area in H&E images. Performance was compared to two pathologists’ scores, then applied to two cohorts: (1) TCGA (n = 871 slides/412 patients) used for mucin-CMS group correlation and (2) Bern (n = 775 slides/517 patients) for histopathological correlations and next-generation Tissue Microarray construction. TCGA and CPTAC (n = 85 patients) were used to further validate mucin detection and CMS classification by gene and protein expression analysis for MUC2, MUC4, MUC5AC and MUC5B. An excellent inter-observer agreement between pathologists’ scores and the algorithm was obtained (ICC = 0.92). In TCGA, mucinous tumors were predominantly CMS1 (25.7%), CMS3 (24.6%) and CMS4 (16.2%). Average mucin in CMS2 was 1.8%, indicating negligible amounts. RNA and protein expression of MUC2, MUC4, MUC5AC and MUC5B were low-to-absent in CMS2. MUC5AC protein expression correlated with aggressive tumor features (e.g., distant metastases (p = 0.0334), BRAF mutation (p < 0.0001), mismatch repair-deficiency (p < 0.0001), and unfavorable 5-year overall survival (44% versus 65% for positive/negative staining). MUC2 expression showed the opposite trend, correlating with less lymphatic (p = 0.0096) and venous vessel invasion (p = 0.0023), no impact on survival.The absence of mucin-expressing tumors in CMS2 provides an important phenotype-genotype correlation. Together with MSI, mucinous histology may help predict CMS classification using only histopathology and should be considered in future image classifiers of molecular subtypes.
  •  
19.
  • Oggiano, Florian, et al. (författare)
  • Overlapping morphological, immunohistochemical and genetic features of superficial CD34-positive fibroblastic tumor and PRDM10-rearranged soft tissue tumor.
  • 2022
  • Ingår i: Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc. - : Elsevier BV. - 1530-0285. ; 35:6, s. 767-776
  • Tidskriftsartikel (refereegranskat)abstract
    • Superficial CD34-positive fibroblastic tumor (SCD34FT) is a recently recognized soft tissue tumor that is considered to be of borderline malignancy. The pathogenesis of this tumor remains incompletely understood, but it has been suggested that SCD34FT overlaps with tumors showing fusions involving the PRDM10 gene. Previous analyses of PRDM10-rearranged tumors have demonstrated that they have a distinct gene expression profile, resulting in high expression of CADM3 (also known as SynCam3), which can be detected immunohistochemically. Here, we investigated a series (n=43) of SCD34FT or PRDM10-rearranged tumors and potential mimics (n=226) with regard to morphological, genetic, and immunohistochemical features. The results show that SCD34FT and PRDM10-rearranged tumor are morphologically indistinguishable; 41 of 43 tumors of both entities are CADM3-positive. Hence, we suggest that they constitute a single entity, preferably referred to as SCD34FT. Expression of CADM3 was only rarely seen in other soft tissue tumors, except in tumors with Schwann cell differentiation. Thus, IHC for CADM3, in combination with the characteristic morphological features, is a valuable adjunct in the diagnosis of SCD34FT.
  •  
20.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-20 av 25

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy