SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2632 3338 "

Sökning: L773:2632 3338

  • Resultat 11-20 av 33
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  • Farnocchia, Davide, et al. (författare)
  • International Asteroid Warning Network Timing Campaign: 2019 XS
  • 2022
  • Ingår i: The Planetary Science Journal. - : Institute of Physics Publishing (IOPP). - 2632-3338. ; 3:7
  • Tidskriftsartikel (refereegranskat)abstract
    • As part of the International Asteroid Warning Network's observational exercises, we conducted a campaign to observe near-Earth asteroid 2019 XS around its close approach to Earth on 2021 November 9. The goal of the campaign was to characterize errors in the observation times reported to the Minor Planet Center, which become an increasingly important consideration as astrometric accuracy improves and more fast-moving asteroids are observed. As part of the exercise, a total of 957 astrometric observations of 2019 XS during the encounter were reported and subsequently were analyzed to obtain the corresponding residuals. While the timing errors are typically smaller than 1 s, the reported times appear to be negatively biased, i.e., they are generally earlier than they should be. We also compared the observer-provided position uncertainty with the cross-track residuals, which are independent of timing errors. A large fraction of the estimated uncertainties appear to be optimistic, especially when <0 2. We compiled individual reports for each observer to help identify and remove the root cause of any possible timing error and improve the uncertainty quantification process. We suggest possible sources of timing errors and describe a simple procedure to derive reliable, conservative position uncertainties.
  •  
12.
  • Farnocchia, Davide, et al. (författare)
  • The Second International Asteroid Warning Network Timing Campaign: 2005 LW3
  • 2023
  • Ingår i: The Planetary Science Journal. - : Institute of Physics (IOP). - 2632-3338. ; 4:11
  • Tidskriftsartikel (refereegranskat)abstract
    • The Earth close approach of near-Earth asteroid 2005 LW3 on 2022 November 23 represented a good opportunity for a second observing campaign to test the timing accuracy of astrometric observation. With 82 participating stations, the International Asteroid Warning Network collected 1046 observations of 2005 LW3 around the time of the close approach. Compared to the previous timing campaign targeting 2019 XS, some individual observers were able to significantly improve the accuracy of their reported observation times. In particular, U.S. surveys achieved good timing performance. However, no broad, systematic improvement was achieved compared to the previous campaign, with an overall negative bias persisting among the different observers. The calibration of observing times and the mitigation of timing errors should be important future considerations for observers and orbit computers, respectively.
  •  
13.
  • Fauchez, Thomas J. J., et al. (författare)
  • TRAPPIST Habitable Atmosphere Intercomparison (THAI) Workshop Report
  • 2021
  • Ingår i: The Planetary Science Journal. - : Institute of Physics Publishing (IOPP). - 2632-3338. ; 2:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The era of atmospheric characterization of terrestrial exoplanets is just around the corner. Modeling prior to observations is crucial in order to predict the observational challenges and to prepare for the data interpretation. This paper presents the report of the TRAPPIST Habitable Atmosphere Intercomparison workshop (2020 September 14-16). A review of the climate models and parameterizations of the atmospheric processes on terrestrial exoplanets, model advancements, and limitations, as well as direction for future model development, was discussed. We hope that this report will be used as a roadmap for future numerical simulations of exoplanet atmospheres and maintaining strong connections to the astronomical community.
  •  
14.
  • Fauchez, Thomas J., et al. (författare)
  • The TRAPPIST-1 Habitable Atmosphere Intercomparison (THAI). III. Simulated Observables-the Return of the Spectrum
  • 2022
  • Ingår i: The Planetary Science Journal. - : Institute of Physics Publishing (IOPP). - 2632-3338. ; 3:9
  • Tidskriftsartikel (refereegranskat)abstract
    • The TRAPPIST-1 Habitable Atmosphere Intercomparison (THAI) is a community project that aims to quantify how differences in general circulation models (GCMs) could impact the climate prediction for TRAPPIST-1e and, subsequently, its atmospheric characterization in transit. Four GCMs have participated in THAI: ExoCAM, LMD-Generic, ROCKE-3D, and the UM. This paper, focused on the simulated observations, is the third part of a trilogy, following the analysis of two land planet scenarios (Part I) and two aquaplanet scenarios (Part II). Here we show a robust agreement between the simulated spectra and the number of transits estimated to detect the land planet atmospheres. For the cloudy aquaplanet ones, a 5 sigma detection of CO2 could be achieved in about 10 transits if the atmosphere contains at least 1 bar of CO2. That number can vary by 41%-56% depending on the GCM used to predict the terminator profiles, principally due to differences in the cloud deck altitude, with ExoCAM and LMD-G producing higher clouds than ROCKE-3D and UM. Therefore, for the first time, this work provides "GCM uncertainty error bars" of similar to 50% that need to be considered in future analyses of transmission spectra. We also analyzed the intertransit spectral variability. Its magnitude differs significantly between the GCMs, but its impact on the transmission spectra is within the measurement uncertainties. THAI has demonstrated the importance of model intercomparison for exoplanets and also paved the way for a larger project to develop an intercomparison meta-framework, namely, the Climates Using Interactive Suites of Intercomparisons Nested for Exoplanet Studies.
  •  
15.
  • Gray, Zuri, et al. (författare)
  • Polarimetry of Didymos–Dimorphos: Unexpected Long-term Effects of the DART Impact
  • 2024
  • Ingår i: The Planetary Science Journal. - : Institute of Physics (IOP). - 2632-3338. ; 5:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We have monitored the Didymos–Dimorphos binary system in imaging polarimetric mode before and after the impact from the Double Asteroid Redirection Test mission. A previous spectropolarimetric study showed that the impact caused a dramatic drop in polarization. Our longer-term monitoring shows that the polarization of the post-impact system remains lower than the pre-impact system even months after the impact, suggesting that some fresh ejecta material remains in the system at the time of our observations, either in orbit or settled on the surface. The slope of the post-impact polarimetric curve is shallower than that of the pre-impact system, implying an increase in albedo of the system. This suggests that the ejected material is composed of smaller and possibly brighter particles than those present on the pre-impact surface of the asteroid. Our polarimetric maps show that the dust cloud ejected immediately after the impact polarizes light in a spatially uniform manner (and at a lower level than pre-impact). Later maps exhibit a gradient in polarization between the photocentre (which probes the asteroid surface) and the surrounding cloud and tail. The polarization occasionally shows some small-scale variations, the source of which is not yet clear. The polarimetric phase curve of Didymos–Dimorphos resembles that of the S-type asteroid class.
  •  
16.
  • Kueny, Jay K., et al. (författare)
  • Implications for the Formation of (155140) 2005 UD from a New Convex Shape Model
  • 2023
  • Ingår i: The Planetary Science Journal. - : Institute of Physics (IOP). - 2632-3338. ; 4:3
  • Tidskriftsartikel (refereegranskat)abstract
    • (155140) 2005 UD has a similar orbit to (3200) Phaethon, an active asteroid in a highly eccentric orbit thought to be the source of the Geminid meteor shower. Evidence points to a genetic relationship between these two objects, but we have yet to fully understand how 2005 UD and Phaethon could have separated into this associated pair. Presented herein are new observations of 2005 UD from five observatories that were carried out during the 2018, 2019, and 2021 apparitions. We implemented light curve inversion using our new data, as well as dense and sparse archival data from epochs in 2005–2021, to better constrain the rotational period and derive a convex shape model of 2005 UD. We discuss two equally well-fitting pole solutions (λ = 116 6, β = −53 6) and (λ = 300 3, β = −55 4), the former largely in agreement with previous thermophysical analyses and the latter interesting due to its proximity to Phaethon's pole orientation. We also present a refined sidereal period of Psid = 5.234246 ± 0.000097 hr. A search for surface color heterogeneity showed no significant rotational variation. An activity search using the deepest stacked image available of 2005 UD near aphelion did not reveal a coma or tail but allowed modeling of an upper limit of 0.04–0.37 kg s−1 for dust production. We then leveraged our spin solutions to help limit the range of formation scenarios and the link to Phaethon in the context of nongravitational forces and timescales associated with the physical evolution of the system.
  •  
17.
  • Lillis, Robert J., et al. (författare)
  • MOSAIC: A satellite constellation to enable groundbreaking mars climate system science and prepare for human exploration
  • 2021
  • Ingår i: Planetary Science Journal. - : Institute of Physics (IOP). - 2632-3338. ; 2:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The Martian climate system has been revealed to rival the complexity of Earth's. Over the last 20 yr, a fragmented and incomplete picture has emerged of its structure and variability; we remain largely ignorant of many of the physical processes driving matter and energy flow between and within Mars' diverse climate domains. Mars Orbiters for Surface, Atmosphere, and Ionosphere Connections (MOSAIC) is a constellation of ten platforms focused on understanding these climate connections, with orbits and instruments tailored to observe the Martian climate system from three complementary perspectives. First, low-circular near-polar Sun-synchronous orbits (a large mothership and three smallsats spaced in local time) enable vertical profiling of wind, aerosols, water, and temperature, as well as mapping of surface and subsurface ice. Second, elliptical orbits sampling all of Mars' plasma regions enable multipoint measurements necessary to understand mass/energy transport and ion-driven escape, also enabling, with the polar orbiters, dense radio occultation coverage. Last, longitudinally spaced areostationary orbits enable synoptic views of the lower atmosphere necessary to understand global and mesoscale dynamics, global views of the hydrogen and oxygen exospheres, and upstream measurements of space weather conditions. MOSAIC will characterize climate system variability diurnally and seasonally, on meso-, regional, and global scales, targeting the shallow subsurface all the way out to the solar wind, making many first-of-their-kind measurements. Importantly, these measurements will also prepare for human exploration and habitation of Mars by providing water resource prospecting, operational forecasting of dust and radiation hazards, and ionospheric communication/positioning disruptions.
  •  
18.
  • López-Oquendo, Andy, et al. (författare)
  • Physical Characterization of 2015 JD1: A Possibly Inhomogeneous Near-Earth Asteroid
  • 2022
  • Ingår i: The Planetary Science Journal. - : Institute of Physics Publishing (IOPP). - 2632-3338. ; 3:8
  • Tidskriftsartikel (refereegranskat)abstract
    • The surfaces of airless bodies such as asteroids are exposed to many phenomena that can alter their physical properties. Bennu, the target of the OSIRIS-REx mission, has demonstrated how complex the surface of a small body can be. In 2019 November, the potentially hazardous asteroid 2015 JD1 experienced a close approach of 0.033 1 au from the Earth. We present results of the physical characterization of 2015 JD1 based on ground-based radar, spectroscopy, and photometric observations acquired during 2019 November. Radar polarimetry measurements from the Arecibo Observatory indicate a morphologically complex surface. The delay-Doppler images reveal a contact binary asteroid with an estimated visible extent of ∼150 m. Our observations suggest that 2015 JD1 is an E-type asteroid with a surface composition similar to aubrites, a class of differentiated enstatite meteorites. The dynamical properties of 2015 JD1 suggest that it came from the ν6 resonance with Jupiter, and spectral comparison with major E-type bodies suggests that it may have been derived from a parental body similar to the progenitor of the E-type (64) Angelina. Significantly, we find rotational spectral variation across the surface of 2015 JD1 from the red to blue spectral slope. Our compositional analysis suggests that the spectral slope variation could be due to the lack of iron and sulfides in one area of the surface of 2015 JD1 and/or differences in grain sizes.
  •  
19.
  • Penttilä, Antti, et al. (författare)
  • Modeling Linear Polarization of the Didymos–Dimorphos System before and after the DART Impact
  • 2024
  • Ingår i: The Planetary Science Journal. - : Institute of Physics (IOP). - 2632-3338. ; 5:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We analyze the polarization observations of the Didymos–Dimorphos system before and after the impact by the NASA Double Asteroid Redirection Test spacecraft on Dimorphos. We fit empirical polarization phase curve models and statistically confirm the discovery by Gray et al. about the degree of linear polarization of the system decreasing on the impact and remaining altered for at least 30 days post-impact. With numerical simulations of particles in the geometric optics domain, we estimate the dominant size of the particles either in the regolith of Didymos and Dimorphos or in the impact-driven ejecta cloud to be several hundred micrometers. The observed change between the pre-impact and post-impact systems indicates either a decrease in average particle size of some tens of micrometers or a decreased level of space weathering.
  •  
20.
  • Poppe, A.R., et al. (författare)
  • Fractionation of solar wind minor ion precipitation by the lunar paleomagnetosphere
  • 2021
  • Ingår i: Planetary Science Journal. - : Institute of Physics (IOP). - 2632-3338. ; 2:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The analysis of solar wind material implanted within lunar soil has provided significant insight into the makeup and evolutionary history of the solar wind and, by extension, the Sun and protosolar nebula. These analyses often rely on the tacit assumption that the Moon has served as an unbiased recorder of solar wind composition over its 4.5 billion yr lifetime. Recent work, however, has shown that for a majority of its lifetime, the Moon has possessed a dynamo that generates a global magnetic field with surface field strengths of at least 5 μT. In turn, the presence of such a field has been shown to significantly alter the lunar–solar wind interaction via the formation of a lunar “paleomagnetosphere.” This paleomagnetosphere has implications for the flux of solar wind minor ions to the lunar surface and their subsequent implantation in lunar soil grains. Here we use a three-dimensional hybrid plasma model to investigate the effects of the lunar paleomagnetosphere on the dynamics and precipitation of solar wind minor ions to the lunar surface. The model results show that the lunar paleomagnetosphere can suppress minor ion fluxes to the lunar surface by more than an order of magnitude and strongly fractionates the precipitating solar wind in a complex, nonlinear fashion with respect to both the minor ion charge-to-mass ratio and the surface paleomagnetic field strength. We discuss the implications of these results with respect to both the analysis of trapped material in lunar grains and the semiquantitative 40Ar/36Ar antiquity indicator for lunar soils.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-20 av 33

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy