SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Abdalmoaty Mohamed) "

Sökning: WFRF:(Abdalmoaty Mohamed)

  • Resultat 11-20 av 25
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  • Abdalmoaty, Mohamed R., 1986-, et al. (författare)
  • Application of a Linear PEM Estimator to a Stochastic Wiener-Hammerstein Benchmark Problem⁎
  • 2018
  • Ingår i: IFAC-PapersOnLine. - : Elsevier B.V.. - 2405-8963. ; 51:15, s. 784-789
  • Tidskriftsartikel (refereegranskat)abstract
    • The estimation problem of stochastic Wiener-Hammerstein models is recognized to be challenging, mainly due to the analytical intractability of the likelihood function. In this contribution, we apply a computationally attractive prediction error method estimator to a real-data stochastic Wiener-Hammerstein benchmark problem. The estimator is defined using a deterministic predictor that is nonlinear in the input. The prediction error method results in tractable expressions, and Monte Carlo approximations are not necessary. This allows us to tackle several issues considered challenging from the perspective of the current mainstream approach. Under mild conditions, the estimator can be shown to be consistent and asymptotically normal. The results of the method applied to the benchmark data are presented and discussed.
  •  
12.
  • Abdalmoaty, Mohamed Rasheed, 1986-, et al. (författare)
  • Consistent Estimators of Stochastic MIMO Wiener Models based on Suboptimal Predictors
  • 2018
  • Ingår i: 2018 IEEE Conference on Decision and Control (CDC). - : IEEE. - 9781538613955 - 9781538613948 - 9781538613962 ; , s. 3842-3847
  • Konferensbidrag (refereegranskat)abstract
    • We consider a parameter estimation problem in a general class of stochastic multiple-inputs multiple-outputs Wiener models, where the likelihood function is, in general, analytically intractable. When the output signal is a scalar independent stochastic process, the likelihood function of the parameters is given by a product of scalar integrals. In this case, numerical integration may be efficiently used to approximately solve the maximum likelihood problem. Otherwise, the likelihood function is given by a challenging multidimensional integral. In this contribution, we argue that by ignoring the temporal and spatial dependence of the stochastic disturbances, a computationally attractive estimator based on a suboptimal predictor can be constructed by evaluating scalar integrals regardless of the number of outputs. Under some conditions, the convergence of the resulting estimators can be established and consistency is achieved under certain identifiability hypothesis. We highlight the relationship between the resulting estimators and a recently proposed prediction error method estimator. We also remark that the method can be used for a wider class of stochastic nonlinear models. The performance of the method is demonstrated by a numerical simulation example using a 2-inputs 2-outputs model with 9 parameters.
  •  
13.
  • Abdalmoaty, Mohamed R. H., 1986-, et al. (författare)
  • Identification of Non-Linear Differential-Algebraic Equation Models with Process Disturbances
  • 2021
  • Ingår i: 2021 60th IEEE Conference on Decision and Control (CDC). - : IEEE. - 9781665436595 - 9781665436588 - 9781665436601 ; , s. 2300-2305
  • Konferensbidrag (refereegranskat)abstract
    • Differential-algebraic equations (DAEs) arise naturally as a result of equation-based object-oriented modeling. In many cases, these models contain unknown parameters that have to be estimated using experimental data. However, often the system is subject to unknown disturbances which, if not taken into account in the estimation, can severely affect the model's accuracy. For non-linear state-space models, particle filter methods have been developed to tackle this issue. Unfortunately, applying such methods to non-linear DAEs requires a transformation into a state-space form, which is particularly difficult to obtain for models with process disturbances. In this paper, we propose a simulation-based prediction error method that can be used for non-linear DAEs where disturbances are modeled as continuous-time stochastic processes. To the authors' best knowledge, there are no general methods successfully dealing with parameter estimation for this type of model. One of the challenges in particle filtering  methods are random variations in the minimized cost function due to the nature of the algorithm. In our approach, a similar phenomenon occurs and we explicitly consider how to sample the underlying continuous process to mitigate this problem. The method is illustrated numerically on a pendulum example. The results suggest that the method is able to deliver consistent estimates.
  •  
14.
  • Abdalmoaty, Mohamed R., 1986-, et al. (författare)
  • Identification of a Class of Nonlinear Dynamical Networks⁎
  • 2018
  • Ingår i: IFAC-PapersOnLine. - : Elsevier B.V.. - 2405-8963. ; 51:15, s. 868-873
  • Tidskriftsartikel (refereegranskat)abstract
    • Identification of dynamic networks has attracted considerable interest recently. So far the main focus has been on linear time-invariant networks. Meanwhile, most real-life systems exhibit nonlinear behaviors; consider, for example, two stochastic linear time-invariant systems connected in series, each of which has a nonlinearity at its output. The estimation problem in this case is recognized to be challenging, due to the analytical intractability of both the likelihood function and the optimal one-step ahead predictors of the measured nodes. In this contribution, we introduce a relatively simple prediction error method that may be used for the estimation of nonlinear dynamical networks. The estimator is defined using a deterministic predictor that is nonlinear in the known signals. The estimation problem can be defined using closed-form analytical expressions in several non-trivial cases, and Monte Carlo approximations are not necessarily required. We show, that this is the case for some block-oriented networks with no feedback loops and where all the nonlinear modules are polynomials. Consequently, the proposed method can be applied in situations considered challenging by current approaches. The performance of the estimation method is illustrated on a numerical simulation example.
  •  
15.
  • Abdalmoaty, Mohamed, 1986-, et al. (författare)
  • Simulated Pseudo Maximum Likelihood Identification of Nonlinear Models
  • 2017
  • Ingår i: The 20th IFAC World Congress. - : Elsevier. ; 50:1, s. 14058-14063
  • Konferensbidrag (refereegranskat)abstract
    • Nonlinear stochastic parametric models are widely used in various fields. However, for these models, the problem of maximum likelihood identification is very challenging due to the intractability of the likelihood function. Recently, several methods have been developed to approximate the analytically intractable likelihood function and compute either the maximum likelihood or a Bayesian estimator. These methods, albeit asymptotically optimal, are computationally expensive. In this contribution, we present a simulation-based pseudo likelihood estimator for nonlinear stochastic models. It relies only on the first two moments of the model, which are easy to approximate using Monte-Carlo simulations on the model. The resulting estimator is consistent and asymptotically normal. We show that the pseudo maximum likelihood estimator, based on a multivariate normal family, solves a prediction error minimization problem using a parameterized norm and an implicit linear predictor. In the light of this interpretation, we compare with the predictor defined by an ensemble Kalman filter. Although not identical, simulations indicate a close relationship. The performance of the simulated pseudo maximum likelihood method is illustrated in three examples. They include a challenging state-space model of dimension 100 with one output and 2 unknown parameters, as well as an application-motivated model with 5 states, 2 outputs and 5 unknown parameters.
  •  
16.
  • Abdalmoaty, Mohamed, 1986-, et al. (författare)
  • The Gaussian MLE versus the Optimally weighted LSE
  • 2020
  • Ingår i: IEEE signal processing magazine (Print). - : Institute of Electrical and Electronics Engineers (IEEE). - 1053-5888 .- 1558-0792. ; 37:6, s. 195-199
  • Tidskriftsartikel (refereegranskat)abstract
    • In this note, we derive and compare the asymptotic covariance matrices of two parametric estimators: the Gaussian Maximum Likelihood Estimator (MLE), and the optimally weighted Least-Squares Estimator (LSE). We assume a general model parameterization where the model's mean and variance are jointly parameterized, and consider Gaussian and non-Gaussian data distributions.
  •  
17.
  • Anubhab, Ghosh, et al. (författare)
  • DeepBayes -- an estimator for parameter estimation in stochastic nonlinear dynamical models
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Stochastic nonlinear dynamical systems are ubiquitous in modern, real-world applications. Yet, estimating the unknown parameters of stochastic, nonlinear dynamical models remains a challenging problem. The majority of existing methods employ maximum likelihood or Bayesian estimation. However, these methods suffer from some limitations, most notably the substantial computational time for inference coupled with limited flexibility in application. In this work, we propose DeepBayes estimators that leverage the power of deep recurrent neural networks in learning an estimator. The method consists of first training a recurrent neural network to minimize the mean-squared estimation error over a set of synthetically generated data using models drawn from the model set of interest. The a priori trained estimator can then be used directly for inference by evaluating the network with the estimation data. The deep recurrent neural network architectures can be trained offline and ensure significant time savings during inference. We experiment with two popular recurrent neural networks -- long short term memory network (LSTM) and gated recurrent unit (GRU). We demonstrate the applicability of our proposed method on different example models and perform detailed comparisons with state-of-the-art approaches. We also provide a study on a real-world nonlinear benchmark problem. The experimental evaluations show that the proposed approach is asymptotically as good as the Bayes estimator. 
  •  
18.
  • Anubhab, Ghosh, et al. (författare)
  • Time-Varying Normalizing Flows for Dynamical Signals
  • 2022
  • Konferensbidrag (refereegranskat)abstract
    • We develop a time-varying normalizing flow (TVNF) for explicit generative modeling of dynamical signals. Being explicit, it can generate samples of dynamical signals, and compute the likelihood of a (given) dynamical signal sample. In the proposed model, signal flow in the layers of the normalizing flow is a function of time, which is realized using an encoded representation that is the output of a recurrent neural network (RNN). Given a set of dynamical signals, the parameters of TVNF are learned according to a maximum-likelihood approach in conjunction with gradient descent (backpropagation). Use of the proposed model is illustrated for a toy application scenario-maximum-likelihood based speech-phone classification task.
  •  
19.
  • Bereza-Jarocinski, Robert, et al. (författare)
  • Stochastic Approximation for Identification of Non-Linear Differential-Algebraic Equations with Process Disturbances
  • 2022
  • Ingår i: 2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC). - : Institute of Electrical and Electronics Engineers (IEEE). - 9781665467612 - 9781665467605 - 9781665467629 ; , s. 6712-6717
  • Konferensbidrag (refereegranskat)abstract
    • Differential-algebraic equations, commonly used to model physical systems, are the basis for many equation-based object-oriented modeling languages. When systems described by such equations are influenced by unknown process disturbances, estimating unknown parameters from experimental data becomes difficult. This is because of problems with the existence of well-defined solutions and the computational tractability of estimators. In this paper, we propose a way to minimize a cost function-whose minimizer is a consistent estimator of the true parameters-using stochastic gradient descent. This approach scales significantly better with the number of unknown parameters than other currently available methods for the same type of problem. The performance of the method is demonstrated through a simulation study with three unknown parameters. The experiments show a significantly reduced variance of the estimator, compared to an output error method neglecting the influence of process disturbances, as well as an ability to reduce the estimation bias of parameters that the output error method particularly struggles with.
  •  
20.
  • Ghosh, Anubhab, et al. (författare)
  • DeepBayes—An estimator for parameter estimation in stochastic nonlinear dynamical models
  • 2024
  • Ingår i: Automatica. - : Elsevier Ltd. - 0005-1098 .- 1873-2836. ; 159
  • Tidskriftsartikel (refereegranskat)abstract
    • Stochastic nonlinear dynamical systems are ubiquitous in modern, real-world applications. Yet, estimating the unknown parameters of stochastic, nonlinear dynamical models remains a challenging problem. The majority of existing methods employ maximum likelihood or Bayesian estimation. However, these methods suffer from some limitations, most notably the substantial computational time for inference coupled with limited flexibility in application. In this work, we propose DeepBayes estimators that leverage the power of deep recurrent neural networks. The method consists of first training a recurrent neural network to minimize the mean-squared estimation error over a set of synthetically generated data using models drawn from the model set of interest. The a priori trained estimator can then be used directly for inference by evaluating the network with the estimation data. The deep recurrent neural network architectures can be trained offline and ensure significant time savings during inference. We experiment with two popular recurrent neural networks — long short term memory network (LSTM) and gated recurrent unit (GRU). We demonstrate the applicability of our proposed method on different example models and perform detailed comparisons with state-of-the-art approaches. We also provide a study on a real-world nonlinear benchmark problem. The experimental evaluations show that the proposed approach is asymptotically as good as the Bayes estimator.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-20 av 25

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy